
  
Abstract— This paper proposes an alternative method to evaluate 

the independence between random variables. The new method is 
particularly useful when the tested random variables are continuous, 
because the most used tests for independence are not able to give 
precise evaluations. In particular, we analyze and compare two 
different methods to test the independence among financial variables. 
The first is the classical chi-squared test generally used to evaluate 
the independence of historical observations in the portfolio risk 
valuation. The new alternative method is based on a conditional 
expectation estimator. Thus, we can compare the results of the two 
methods by evaluating the performance in terms of goodness-of-fit 
tests. 

Keywords—test of independence, conditional expectation, 
Kernel, Non Parametric test.  

I. INTRODUCTION 
his paper discusses two different methods to test the 
independence among random variables. On the one hand, 
several well known methods test independence between 

random variables by evaluating the independence between  
their realizations. Clearly, if the events are not independent, 
this criterion is sufficient to guarantee that the random 
variables are not independent. Thus, these methods can be 
properly used for discrete random variables. However, when 
random variables are continuous, we cannot guarantee that the 
random variables are independent only if a few events are 
independent. Moreover, in several financial applications, tests 
of these kinds are generally used although the financial 
random variables are assumed to be continuous. For example, 
when we evaluate the risk interval forecasts, with reference to 
the information available at each time, we use the tests 
proposed by [1], [2], and with a chi-squared test we also 
evaluate the time independence. In this paper, we propose an 
alternative method to test the independence among random 
variables, based on the conditional expectation between 
random variables. As observed by [3], the conditional 
expectation between two random variables 𝐸𝐸(𝑌𝑌|𝑋𝑋) can be 
estimated using different methodologies: the Kernel method 

This paper has been supported by the Italian funds ex MURST 60% 2014, 
2015 and MIUR PRIN MISURA Project, 2013–2015, and ITALY project 
(Italian Talented Young researchers). The research was also supported 
through the Czech Science Foundation (GACR) under project 13-13142S and 
through SP2013/3, an SGS research project of VSB-TU Ostrava, and 
furthermore by the European Regional Development Fund in the 
IT4Innovations Centre of Excellence, including the access to the 
supercomputing capacity, and the European Social Fund in the framework of 
CZ.1.07/2.3.00/20.0296 (to S.O.) and CZ.1.07/2.3.00/30.0016 (to T.L.). 
S.O. L. Author is with University of Bergamo, via dei Caniana, 2, Bergamo, 
Italy; and VŠB -TU Ostrava, Sokolská třída 33, Ostrava, Czech republic; e-
mail: sergio.ortobelli@unibg.it. 
T.L.  Author is with University of Bergamo, via dei Caniana, 2, Bergamo, 
Italy; and VŠB -TU Ostrava, Sokolská třída 33, Ostrava, Czech republic; e-
mail: tommaso.lando@unibg.it. 

and the OLP method. On the one hand, the kernel non-
parametric regression (see [4] and [5]) allows to estimate 
𝐸𝐸(𝑌𝑌|𝑋𝑋 = 𝑥𝑥) as a locally weighted average, based on the 
choice of an appropriate kernel function: the method yields 
consistent estimators, provided that the kernel functions and 
the random variable 𝑌𝑌 satisfy some conditions, described in 
Section II. On the other hand, an alternative methodology was 
recently introduced by [6] for estimating the random variable 
𝐸𝐸(𝑌𝑌|𝑋𝑋): this method has been proved to be consistent without 
requiring any regularity assumption. In this paper we use both 
methods to evaluate the difference between tests based on the 
conditional expectation and the classic chi squared test for the 
independence.  In order to compare the effects of the two tests 
we discuss and examine the case of some financial variables 
using both alternative methodologies for estimating the 
random variable 𝐸𝐸(𝑌𝑌|𝑋𝑋). Then, we can perform a simulation 
analysis, drawing a bivariate random sample from (𝑋𝑋,𝑌𝑌), and 
finally investigate which test better fits to the true case. 

The paper is organized as follows: in Section II we present 
the different methodologies and their properties; in Section III 
we examine a method to compare the two tests; in Section IV 
we briefly illustrate the financial interpretation and possible 
application of the tests of independence. 

II. TESTS OF INDEPENDENCE  
In this section, we describe two different procedures to 

evaluate the independence among random variables. First, we 
present the well know Pearson chi-square test, used to test 
independence between random variables and events. Then, the 
second alternative test is based on the conditional expectation 
and thereby differs from several other tests which have been 
proposed for continuous random variables  (see [7],[8] and 
[9]): 

The chi-squared independence test  
Two random variables X and Y are independent if for any 

couple of Borel sets A and B then 
 𝑃𝑃(𝑋𝑋 ∈ 𝐴𝐴,𝑌𝑌 ∈ 𝐵𝐵) = 𝑃𝑃(𝑋𝑋 ∈ 𝐴𝐴)𝑃𝑃(𝑌𝑌 ∈ 𝐵𝐵). 

Therefore, if 𝑋𝑋 = ∑ 𝑎𝑎𝑖𝑖𝐼𝐼[𝑋𝑋∈𝐴𝐴𝑖𝑖 ]
𝑛𝑛
𝑖𝑖=1  and  𝑌𝑌 = ∑ 𝑏𝑏𝑗𝑗 𝐼𝐼[𝑌𝑌∈𝐵𝐵𝑗𝑗 ]

𝑚𝑚
𝑗𝑗=1  are 

discrete random variables (where the collections {𝐴𝐴𝑖𝑖}𝑖𝑖=1,…,𝑛𝑛  
and �𝐵𝐵𝑗𝑗 �𝑗𝑗=1,…,𝑚𝑚

 are partitions of the real line) we can easily 
test independence using the chi squared test. As a matter of 
fact, in order to prove the independence of X and Y it is 
sufficient to show that, for any i=1,…,n and j=1,…,m, we have 
that  
𝑝𝑝𝑖𝑖 ,𝑗𝑗 = 𝑃𝑃�𝑋𝑋 ∈ 𝐴𝐴𝑖𝑖 ,𝑌𝑌 ∈ 𝐵𝐵𝑗𝑗 � = 𝑃𝑃(𝑋𝑋 ∈ 𝐴𝐴𝑖𝑖)𝑃𝑃�𝑌𝑌 ∈ 𝐵𝐵𝑗𝑗 � = 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗 . 

Hence, we can use the statistic 
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𝜒𝜒2 = ∑ ∑ �𝑓𝑓𝑖𝑖𝑖𝑖 −𝑒𝑒𝑖𝑖𝑖𝑖 �
2

𝑒𝑒𝑖𝑖𝑖𝑖
𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 = 𝑁𝑁∑ ∑ �𝑝𝑝𝑖𝑖𝑖𝑖 −𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗 �

2

𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1       (1) 

where N is the sample size, 𝑝𝑝𝑖𝑖𝑖𝑖 , 𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑗𝑗  are the estimated 
probabilities and similarly  fij  is the observed frequency count 
of the events belonging to both the i-th category of X and j-th 
category of Y, while eij is the expected count when X and Y are 
independent. Thus, the null hypothesis of the independence 
assumption must be rejected when the p-value of the chi 
squared statistic (1) (that is chi squared distributed with (m-
1)(n-1) degrees of freedom) is less than a given significance 
level 𝛼𝛼. Observe that this statistic can also be used to test the 
independence of continuous random variables. However, in 
this case, the statistic cannot be applied in order to evaluate 
whether the random variables are independent, indeed we can 
only guarantee that the random variables are not independent 
if the null hypothesis is rejected. 

 Independence test based on the conditional expected value  
Let 𝑋𝑋:Ω → ℝ and 𝑌𝑌:Ω → ℝ be integrable random variables in 
the probability space (Ω,ℑ,𝑃𝑃).  As observed by [3] when  two 
integrable random variables X and Y are independent, then 
𝐸𝐸(𝑌𝑌|𝑋𝑋)=E(Y) and generally the converse is not true, except in 
the case that Y is positive (negative). Thus, given a positive 
non constant measurable function g such that 𝐸𝐸�𝑔𝑔(𝑌𝑌)� < ∞ 
we can easily test the independence of two integrable random 
variables X and Y by considering the variance of 𝐸𝐸(𝑔𝑔(𝑌𝑌)|𝑋𝑋). 
As a matter of fact, the variance of 𝐸𝐸(𝑔𝑔(𝑌𝑌)|𝑋𝑋) is equal to zero 
if and only if Y is independent from X. Hence, assume that “Y 
is independent from X” represents the null hypothesis of the 
test. We reject the null hypothesis anytime the variance of  
𝐸𝐸(𝑔𝑔(𝑌𝑌)|𝑋𝑋) is significantly greater than a given positive 
benchmark value.  We call this test conditional test. Typically, 
we consider the function g(x)=|x|. Let 
(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), … , (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) be a random sample of 
independent observations from the bi-dimensional variable 
(𝑋𝑋,𝑌𝑌).  Next, we need an estimator of 𝐸𝐸(|𝑌𝑌||𝑋𝑋). In particular 
we recall that [3] proposed two alternative estimators of the 
conditional expected value: the first one is based on the Kernel 
non-parametric regression, and the other is based on the 
approximation of the sigma algebra generated by X.  Thus the 
first procedure is aimed at estimating the conditional 
expectation of |𝑌𝑌| given 𝑋𝑋 = 𝑥𝑥, which is a mathematical 
function of 𝑋𝑋; the second method yields an unbiased and 
consistent estimator of the random variable 𝐸𝐸(|𝑌𝑌||𝑋𝑋). 
The kernel non-parametric regression. It is well known 
that, if we know the form of the function 𝑓𝑓(𝑥𝑥) =
𝐸𝐸(|𝑌𝑌||𝑋𝑋 = 𝑥𝑥) (e.g. polynomial, exponential, etc.), then we can 
estimate the unknown parameters of 𝑓𝑓(𝑥𝑥) with several 
methods (e.g. least squares). In particular, if we do not know 
the general form of 𝑓𝑓(𝑥𝑥), except that it is a continuous and 
smooth function, then we can approximate it with a non-
parametric method, as proposed by [4] and [5]. Thus, 𝑓𝑓(𝑥𝑥) can 
be estimated by: 

𝑓𝑓𝑛𝑛(𝑥𝑥) =
∑ |𝑦𝑦𝑖𝑖 |𝐾𝐾�

𝑥𝑥−𝑥𝑥𝑖𝑖
ℎ (𝑛𝑛 )�

𝑛𝑛
𝑖𝑖=1

∑ 𝐾𝐾�
𝑥𝑥−𝑥𝑥𝑖𝑖
ℎ (𝑛𝑛 )�

𝑛𝑛
𝑖𝑖=1

,                        (2) 

where 𝐾𝐾(𝑥𝑥) is a density function such that i) 𝐾𝐾(𝑥𝑥) < 𝐶𝐶 < ∞; 
ii) limx→±∞ |𝑥𝑥𝑥𝑥(𝑥𝑥)| = 0; iii) ℎ(𝑛𝑛) → 0 when 𝑛𝑛 → ∞. The 
function 𝐾𝐾(𝑥𝑥) is denoted by kernel, observe that kernel 

functions are generally used for estimating probability 
densities non-parametrically (see [10]). It was proved in [10] 
that if |𝑌𝑌| is quadratically integrable then 𝑓𝑓𝑛𝑛(𝑥𝑥) is a consistent 
estimator for 𝑓𝑓(𝑥𝑥). 
The OLP method. We now describe an alternative non-
parametric approach  [6] for approximating the conditional 
expectation, the method is denoted by “OLP”, which is an 
acronym of the authors’ names. Define by ℑ𝑋𝑋  the σ-algebra 
generated by X (that is, ℑ𝑋𝑋 = 𝜎𝜎(𝑋𝑋) = 𝑋𝑋−1(ℬ) =
{𝑋𝑋−1(𝐵𝐵):𝐵𝐵 ∈ ℬ}, where ℬ is the Borel σ-algebra on ℝ). 
Observe that the regression function is just a “pointwise” 
realization of the random variable 𝐸𝐸(|𝑌𝑌||ℑ𝑋𝑋), which can 
equivalently be denoted by 𝐸𝐸(|𝑌𝑌||𝑋𝑋).  ℑ𝑋𝑋  can be 
approximated by a σ-algebra generated by a suitable partition 
of Ω. In particular, for any 𝑘𝑘 ∈ ℕ, we consider the partition 

�𝐴𝐴𝑗𝑗 �𝐽𝐽=1
𝑏𝑏𝑘𝑘 = {𝐴𝐴1, … ,𝐴𝐴𝑏𝑏𝑘𝑘} of Ω in 𝑏𝑏𝑘𝑘  subsets, where b is an 

integer number greater than 1 and: 

• 𝐴𝐴1 = �𝜔𝜔:𝑋𝑋(𝜔𝜔) ≤ 𝐹𝐹𝑋𝑋−1 � 1
𝑏𝑏𝑘𝑘
��, 

• 𝐴𝐴ℎ = �𝜔𝜔:𝐹𝐹𝑋𝑋−1 �ℎ−1
𝑏𝑏𝑘𝑘
� < 𝑋𝑋(𝜔𝜔) ≤ 𝐹𝐹𝑋𝑋−1 � ℎ

𝑏𝑏𝑘𝑘
�� , 𝑓𝑓𝑓𝑓𝑓𝑓 ℎ =

2, … , 𝑏𝑏𝑘𝑘 − 1  

• 𝐴𝐴𝑏𝑏𝑘𝑘 = Ω − ⋃ 𝐴𝐴𝑗𝑗𝑏𝑏𝑘𝑘−1
𝐽𝐽=1 = {𝜔𝜔:𝑋𝑋(𝜔𝜔) > 𝐹𝐹𝑋𝑋−1 �𝑏𝑏

𝑘𝑘−1
𝑏𝑏𝑘𝑘

�}. 

Starting with the trivial sigma algebra ℑ0 = {∅,Ω}, we can 
obtain a sequence of sigma algebras generated by these 
partitions, for different values of k (k=1,…,m,…). For 
instance, ℑ1 = 𝜎𝜎{∅,Ω,𝐴𝐴1, … ,𝐴𝐴𝑏𝑏} is the sigma algebra 
generated by 𝐴𝐴1 = {𝜔𝜔:𝑋𝑋(𝜔𝜔) ≤ 𝐹𝐹𝑋𝑋−1(1/𝑏𝑏)}, 𝐴𝐴𝑠𝑠 =
�𝜔𝜔:𝐹𝐹𝑋𝑋−1 �𝑠𝑠−1

𝑏𝑏
� < 𝑋𝑋(𝜔𝜔) ≤ 𝐹𝐹𝑋𝑋−1 �𝑠𝑠

𝑏𝑏
��, s=1,...,b-1 and 𝐴𝐴𝑏𝑏 =

{𝜔𝜔:𝑋𝑋(𝜔𝜔) > 𝐹𝐹𝑋𝑋−1((𝑏𝑏 − 1)/𝑏𝑏)}. Generally:  

ℑ𝑘𝑘 = 𝜎𝜎 ��𝐴𝐴𝑗𝑗 �𝐽𝐽=1
𝑏𝑏𝑘𝑘 � , 𝑘𝑘 ∈ ℕ.                     (3) 

Hence, it is possible to estimate the random variable 𝐸𝐸(𝑌𝑌|ℑ𝑋𝑋) 
by 

𝐸𝐸(|𝑌𝑌||ℑ𝑘𝑘)(𝜔𝜔) =  �
1𝐴𝐴𝑗𝑗 (𝜔𝜔)
𝑃𝑃(𝐴𝐴𝑗𝑗 )

𝑏𝑏𝑘𝑘

𝑗𝑗=1
� |𝑌𝑌|𝑑𝑑𝑑𝑑
𝐴𝐴𝑗𝑗

= 

∑ 𝐸𝐸(|𝑌𝑌||𝐴𝐴𝑗𝑗 )1𝐴𝐴𝑗𝑗 (𝜔𝜔)𝑏𝑏𝑘𝑘
𝑗𝑗=1 ,                      (4) 

where 1𝐴𝐴(𝜔𝜔) = �1   𝜔𝜔 ∈ 𝐴𝐴
0   𝜔𝜔 ∉ 𝐴𝐴

�.  It is proved in [6] that 𝐸𝐸(|𝑌𝑌||ℑ𝑘𝑘) 
is a consistent estimator of the random variable 𝐸𝐸(|𝑌𝑌||𝑋𝑋), that 
is,  lim𝑘𝑘→∞ 𝐸𝐸(|𝑌𝑌||ℑ𝑘𝑘) = 𝐸𝐸(|𝑌𝑌||𝑋𝑋) a.s. 

From a practical point of view, given n i.i.d. observations of 
𝑌𝑌, if we know the probability 𝑝𝑝𝑖𝑖  corresponding to the i-th 
outcome 𝑦𝑦𝑖𝑖  , we obtain: 

𝐸𝐸(|𝑌𝑌||𝐴𝐴𝑗𝑗 ) = ∑ |𝑦𝑦𝑖𝑖 |𝑝𝑝𝑖𝑖𝑦𝑦𝑖𝑖∈𝐴𝐴𝑗𝑗 𝑃𝑃(𝐴𝐴𝑗𝑗 )⁄ .                       (5) 
Otherwise, we can give uniform weight to each observation, 

which yields the following consistent estimator of 𝐸𝐸(|𝑌𝑌||𝐴𝐴𝑗𝑗 ): 
1
𝑛𝑛𝐴𝐴𝑗𝑗

∑ |𝑦𝑦𝑖𝑖 |𝑦𝑦𝑖𝑖∈𝐴𝐴𝑗𝑗 ,                                  (6) 

where 𝑛𝑛𝐴𝐴𝑗𝑗  is the number of elements of 𝐴𝐴𝑗𝑗 . Therefore, we are 
always able to estimate 𝐸𝐸(|𝑌𝑌||ℑ𝑘𝑘), which in turn is a 
consistent estimator of the conditional expected value 
𝐸𝐸(|𝑌𝑌||𝑋𝑋).  
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A simple proof of the potentiality of the test can be given 
when we compare uncorrelated but dependent random 
variables as in the following section.  

III. A COMPARISON AMONG TWO PORTFOLIOS 

Let us consider two portfolios of daily returns X and Y, 
taken from the NYSE, which are empirically uncorrelated.1 
Consider that we have about three years of historical daily 
joint observations (750 trading days). First of all, we want to 
test if the losses and gains of the two portfolios are 
independent. Using the chi square test with one degree of 
freedom we could not reject the independence of the two 
portfolios at 95% significance level. Secondly we want to test 
if the two portfolios are independent. Thus, we apply the 
conditional test to the standardized random variables 𝑋𝑋� and 𝑌𝑌�  
of X and Y. We get a variance of 𝐸𝐸��𝑌𝑌��/𝑋𝑋��. equal to 0.0512 
with the OLP estimator and 0.0445 with the Kernel estimator. 
We observe that the joint distribution of the two standardized 
portfolios can be well approximated by a bivariate t-student 
with 5 degrees of freedom. Thus, with a bootstrap technique 
based on bivariate t-student, we estimated the variance 
obtained for a sample of the same dimension (750 
observations) under two different hypotheses: X and Y are 
independent t- distributed or X and Y are dependent but 
uncorrelated.  For independent t distributed random variables 
we get an average variance  of 𝐸𝐸��𝑌𝑌��/𝑋𝑋�� equal to 0.0082, 
while for uncorrelated dependent t distributed random 
variables we get an average variance of  𝐸𝐸��𝑌𝑌��/𝑋𝑋�� equal to 
0.0431. This simple observation suggests to reject the 
independence hypothesis even if the two portfolio are 
uncorrelated. 

 

FIG. 1 Distributions of E(|Y|/X) for uncorrelated or 
independent t-student random variables. 

One further example of this analysis is given in Fig. 1 where 
we report the distributions of 𝐸𝐸��𝑌𝑌��� and of  𝐸𝐸��𝑌𝑌��/𝑋𝑋��  
(estimated with the OLP method) assuming 𝑋𝑋� and 𝑌𝑌�  to be 
uncorrelated or independent t distributed with 5 degrees of 
freedom.  

1 The procedure to get portfolio uncorrelated is very simple and can be 
useful in several practices for example in the PCA to reduce the 
dimensionality of the problem.   

IV. CONCLUSION  
In this paper, we deal with tests of independence among 

random variables. In particular, we show that the well known 
chi squared test for independence is not always able to 
evaluate correctly the independence between random 
variables. On the other hand, a newly proposed test is able to 
capture the dependence of random variables even when they 
are uncorrelated. In particular, we show that the new test could 
be based on two different methodologies for estimating the 
conditional expectation, namely the kernel method and the 
OLP method recently proposed by [6].  
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