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Abstract—This paper is concerned with deriving the stabilization
condition for discrete-time Markovian jump linear systems (MJLSs)
with multiple patterns of mode transition probabilities. In the deriva-
tion, a method of establishing the pattern-dependent transition prob-
ability matrices is proposed, which offers possibilities for extending
our result to other issues of MJLSs.
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I. I NTRODUCTION

OVER the past decades, considerable efforts have been
made in the study of Markovian jump linear systems

(MJLSs) because a class of dynamic systems subject to
random abrupt variations can be modeled by MJLSs (see [1],
[2] and the references therein). Based on such efforts, the
MJLS model has been applied in many practical applications
[3], [4]. However, despite the numerous works available,
most studies in the available literature regarding the control
synthesis problem were found to have been carried out without
consideration of the multiple patterns for mode transition
probabilities.

Indeed, as reported in [5], the use of unified pattern-oriented
transition probabilities may pose considerable uncertainties in
the process of expressing the considered systems as MJLSs.
For this reason, [5] proposed a method capable of stabilizing
multiple pattern-dependent MJLSs in order to improve the
convergence rate of the state response of networked control
systems (NCSs). However, the drawback of [5] lies in the fact
that the NCSs are designed irrespective of the utilization of
the sequence that indicates the variation of patterns.

Motivated by the above concern, this paper focuses on
deriving the stabilization condition for a class of discrete-time
MJLSs with multiple patterns for mode transition probabilities.
In contrast with existing results, this paper employs an addi-
tional discrete-time Markov process to incorporate information
related to patterns into the derivation of the stabilization condi-
tions. In addition, this paper proposes a method of establishing
the pattern-dependent transition probability matrices, which
offers possibilities for extending our result to other issues of
MJLSs.

II. N OTATION

The notationsX ≥ Y and X > Y indicate thatX − Y

is positive semi-definite and positive definite, respectively.
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In symmetric block matrices,(∗) is used as an ellipsis for
terms that are induced by symmetry. For any square matrix
Q, He(Q) = Q + QT and diag(e1, e2, · · · , en) indicates
a diagonal matrix with diagonal entriese1, e2, · · · , en. For

ai ∈ N+ 4
= {1, 2, · · · } such thatai < ai+1, i ∈ N+

n

4
=

{1, 2, · · · , n}, the notation

[Qi]i∈{a1,··· ,an} = [Qa1
· · · Qan

]

[Qij ]i,j∈{a1,··· ,an}

=
�
[Qa1j ]

T

j∈{a1,··· ,an} · · · [Qanj ]
T

j∈{a1,··· ,an}�T ,

whereQi and Qij denote real submatrices with appropriate
dimensions.E(·) denotes the mathematical expectation.

Fig. 1. Transition of multiple patterns for MTP matrices.

I II. PRELIMINARIES

Consider the following discrete-time MJLSs:

xk+1 = A(rk)xk + B(rk)uk, (1)

where xk ∈ Rnx and uk ∈ Rnu denote the state and the
control input, respectively; andrk denotes a discrete-time
Markov process on the probability space that takes the values
in a finite setN+

s . Here, we employ an additional discrete-time
Markov processpk ∈ N+

c to describe the multiple patterns
for mode transition probabilities (MTPs) whose transition
probabilities are given byPr(pk+1 = h|pk = g) = λgh (see
Fig. 1). Then, the mode transition probabilities ofrk are taken
to bePr(rk+1 = j|pk = g, rk = i) = π

(g)
ij , wherep0 and r0

become the initial operation mode and pattern, respectively.
In particular, we define the MTP matrix for any patterng as
Π(g) = [π

(g)
ij ]i,j∈N+

s
(see Fig. 1).

Now, let us consider the following state-feedback control
law: uk = F (pk, rk)xk, whereF (pk, rk) denotes the pattern-
dependent control gain, to be designed later. For later con-
venience, we setAi = A(rk = i), Bi = B(rk = i), and
Fgi = F (pk = g, rk = i). Then, the closed-loop system is
described as follows:

xk+1 = Āgixk, (2)
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whereĀgi = Ai +BiFgi. In addition, the following definition
is adopted to address the stabilization problem under consid-
eration.

Definition 3.1 ( [2], [5]): System (2) is said to be mean
square stable if its solution is such thatlimk→∞ E(||xk||

2) =
0 for any initial conditionsx0, p0, andr0.

Lemma 3.1:System (2) is said to be mean square stable if
there exist matricesFgi ∈ Rnu×nx and symmetric matrices
Pgi ∈ Rnx×nx such that

0 > Mgi = � c�
h=1

s�
j=1

λghπ
(h)
ij ĀT

giPhjĀgi�− Pgi, ∀g, i.

(3)

Proof: Consider the following Lyapunov function candidate
dependent on both the patternpk and the moderk: Vk =
V (pk, rk) = xT

k P (pk, rk)xk, where P (pk, rk) > 0 for all
pk ∈ N+

c andrk ∈ N+
s . Then, from the Rayleigh quotient, it

follows that

E(Vk) ≥ min
g∈N+

c ,i∈N+
s

λmin(Pgi) · E �||xk||
2� , (4)

wherePgi = P (pk = g, rk = i) and λmin(Pgi) denotes the
minimum eigenvalue ofPgi. Note that there exists a scalarδ

such that0 < δI ≤ ming∈N+
c ,i∈N+

s
λmin(Pgi) in the sense

that Pgi > 0 for all g, i. As a result,E(Vk) ≥ δE �||xk||
2�,

which leads to

E �||xk||
2� ≤ δ−1E(Vk), δ > 0. (5)

Next, we see that

E (V (pk+1, rk+1|pk = g, rk = i)) − V (pk = g, rk = i)

= xT
k � c�

h=1

s�
j=1

λghπ
(h)
ij ĀT

giPhjĀgi − Pgi�xk

= xT
k Mgixk. (6)

In addition, forxk 6= 0,

E (V (pk+1, rk+1|pk = g, rk = i)) − V (pk = g, rk = i)

V (pk = g, rk = i)

= −
xT

k (−Mgi)xk

xT
k Pgixk

≤ −min
g,i

λmin(−Mgi)

λmax(Pgi)
. (7)

Let α − 1 = −ming,i
λmin(−Mgi)

λmax(Pgi)
. Then, (3) impliesα < 1,

and (7) allows that

E (V (pk+1, rk+1|pk = g, rk = i)) ≤ αV (pk = g, rk = i),

0 < α < 1,

that is, E (Vk) ≤ αkV (p0, r0) for any x0, p0, and r0.
As a result, (5) can be converted into0 ≤ E �||xk||

2� ≤
δ−1αkV (p0, r0), where0 < α < 1. Hence, we can see that
limk→∞ E �||xk||

2� = 0 becauselimk→∞ αk = 0. Therefore,
by Definition 1, the proof can be completed.

IV. M AIN RESULTS

For simplicity of the discussion, this paper assumes that the
sequence of patterns, designated as PAT in Fig. 2, is generated
by a proper pattern indicator. Based on PAT, we can then
reconstruct the sequences SEQ 1, SEQ 2,· · · , SEQ c from
SEQ 0, which result in the MTP matricesΠ(1), · · · , Π(c)

required in Fig. 1.

Fig. 2. Diagram for the construction of MTP matricesΠ(1), · · · , Π(c).

The following theorem presents a set of conditions for the
control synthesis of (2).

Theorem 4.1:Suppose that there exist matrices̄Fgi ∈
Rnu×nx and symmetric matrices̄Pgi, Qgi,hj ∈ Rnx×nx such
that, for all g, i,

0 < P̄gi −
c�

h=1

s�
j=1

λghπ
(g)
ij Qgi,hj , (8)

0 ≤ 	 P̄hj AiP̄gi + BiF̄gi

(∗) Qgi,hj 
 , ∀h, j. (9)

Then, the closed-loop control system (2) is stochastically
stable and the mode-dependent control gains are given by
Fgi = F̄giP̄

−1
gi for all g, i.

Proof: By Lemma 1, the stability condition of (2) is given by
0 < Pgi −�c

h=1 �s

j=1 λghπ
(g)
ij ĀT

giPhjĀgi. Furthermore, per-
forming a congruent transformation to the stability condition
by P̄gi = P−1

gi yields

0 < P̄gi −
c�

h=1

s�
j=1

λghπ
(g)
ij P̄giĀ

T
giPhjĀgiP̄gi, ∀g, i. (10)

In the sense thatλgh ≥ 0 andπ
(g)
ij ≥ 0, (10) can be converted

into (8),

0 ≤ Qgi,hj − P̄giĀ
T
giPhjĀgiP̄gi. (11)

Finally, after applying the Schur complement to (11), it
becomes (9), wherēFgi = FgiP̄gi.

V. NUMERICAL EXAMPLES

To verify the effectiveness of our result, we consider the
following discrete-time MJLS withs = 3:

A1 = 	0.25 −0.83
2.50 −3.50 
, A2 = 	1.0 −0.25

2.5 −3.00 
, B1 = 	 1
−1 
,

A3 = 	1.5 −0.56
2.5 −2.75 
 , B2 = 	 1

1 
 , B3 = 	 0.8
−1 
 ,
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Π(1) = �
 0.0 0.5 0.5
0.3333 0.6667 0.0
0.5000 0.0 0.5 �� ,

Π(2) = �
 0.5 0.25 0.25
0.0 0.3333 0.6667
0.25 0.5 0.25 �� ,

λ11 = 0.9091, λ12 = 0.0909, λ21 = 0.0833, λ22 = 0.9167.
By the definition ofΠ(g), the MTPπ

(g)
ij can be obtained by

the (i, j)th element ofΠ(g). In addition, the control gainsFgi

for multiple patterns (i.e.,c = 2) can be characterized in terms
of the solution to a set of LMIs in Theorem 1, which are given
as follows:

F11 =
�

1.4229 −1.8047 � ,

F21 =
�

1.4539 −1.8532 � ,

F12 =
�
−4.0191 5.7839 � ,

F22 =
�
−3.8518 5.4816 � ,

F13 =
�

0.8039 −1.3743 � ,

F23 =
�

1.1040 −1.6588 � .

Fig. 3 shows the behavior of the state response by Algorithm
1 based on the obtained control gains, and the mode evolution
used therein, wherex0 = [−0.3 0.4]T , p0 = 1, andr0 = 1.
Here, by letting the cost indexJm = �m

k=0 xT
k xk, it follows

that J20 = 21.0661 for c = 1 andJ20 = 14.9114 for c = 2.
In this sense, we can see that, in comparison with the case of
c = 1, Theorem 1 is in a better position for improving system
performance because it offers the multiple pattern-dependent
stabilization condition.
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Fig. 3. Mode evolution and behavior of the state responsexk =
[x1,k x2,k]T .

VI. CONCLUDING REMARKS

In this paper, we have paid considerable attention to deriving
the multiple pattern-dependent stabilization condition for a
class of discrete-time MJLSs. Our future work is directed
toward extending our result to other interesting problems
associated with MJLSs.
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