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Abstract: Measurements using the high resolution array-comparative genomic hybridization (HR-CGH) array are
accompanied with large noise which strongly affects the estimates of the copy number variations (CNVs) and re-
sults in segmental errors as well as in jitter in the breakpoints. Based on the probabilistic analysis and algorithm
designed, we show that jitter in the breakpoints can be well approximated with the discrete skew Laplace distri-
bution if the local signal-to-noise ratios (SNRs) exceed unity. Using this distribution, we propose an algorithm
for computing the estimate upper and lower bounds. Some measurements and estimates tested using these bounds
show that the higher probe resolution is provided the more segmental accuracy can be achieved and that larger
segmental SNRs cause smaller jitter in the breakpoints. Estimates of the CNVs combined with the bounds pro-
posed may play a crucial role for medical experts to make decisions about true chromosomal changes and even
their existence.
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1 Introduction 1000 base pairs of DNA [6]. The human genome with
23 chromosomes is estimated to be about 3.2 billion
base pairs long and to contain 20000 — 25000 distinct
genes [1]. Each CNV may range from about one kb to
several megabases (Mbs) in size [2].

The deoxyribonucleic acid (DNA) of a genome es-
sential for human life often demonstrates structural
changes called copy-number variations (CNVs) asso-

ciated with disease such as cancer [1]. The sell with One of the techniques employing chromosomal
the DNA typically has a number of copies of one or microarray analysis to detect the CNVs at a resolution
more sections of the DNA that results in the struc- level of 5-10 kbs is the array-comparative genomic
tural chromosomal rearrangements - deletions, dupli- hybridization (aCGH) [7]. It was reported in [8] that
cations, inversions and translocations of certain parts the high-resolution CGH (HR-CGH) arrays are accu-
[2]. Small such CNVs are present in many forms in rate to detect structural variations (SV) at resolution of
the human genome, including single-nucleotide poly- 200 bp. In microarray technique, the CN'Vs are often
morphisms, small insertion-deletion polymorphisms, normalized and plotted as logy R/G = log, Ratio,
variable numbers of repetitive sequences, and ge- where R and G are the fluorescent Red and Green
nomic structural alterations [3]. If genomic aberra- intensities, respectively [9]. An annoying feature of
tions involve large CNVs, the process was shown to such measurements is that the Ratio is highly contam-
be directly coupled with cancer and the relevant struc- inated by noise which intensity does not always al-
tural changes were called copy-number alterations low for correct visual identification of the breakpoints
(CNAs) [4]. A brief survey of types of chromosome and copy numbers and makes most of the estimation
alterations involving copy number changes is given techniques poor efficient if the number of segmental
in [5]. The copy number represents the number of readings is small. It was shown in [10] that sufficient
DNA molecules in a cell and can be defined as the quality in the CNVs mapping can be achieved with
number of times a given segment of DNA is present in tens of millions of paired reads of 29—36 bases at each.
a cell. Because the DNA is usually double-stranded, Deletions as small as 300 bp should also be detected
the size of a gene or chromosome is often measured in some cases. For instance, arrays with a 9-bp tiling
in base pairs. A commonly accepted unit of measure- path were used in [8] to map a 622-bp heterozygous
ment in molecular biology is kilobase (kb) equal to deletion. So, further progress in the probe resolution
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of the CN'Vs measurements is desirable.

Typically, a chromosome section is observed with
some average resolution 7, bp and M readings in the
genomic location scale. The following distinct prop-
erties of the CNVs function were recognized [2,5]:

1) It is piecewise constant (PWC) and sparse with
a small number L of the breakpoints (edges) i;, | €
[1, L], on a long base-pair length. The breakpoints are
placesas 0 < 7; < --- < ip < ¥M and can be united
in a vector

T =liyiy...ig)T e RE. (1)

Sometimes, the genomic location scale is repre-
sented in the number of readings n € [1, M| with
a unit step ignoring “bad” or empty measurements,
where n represents the nth reading. In such a scale,
the n;th discrete point corresponds to the 7;th break-
point in the genomic location scale and the points
placed as 0 < n; < --- < mp < M can be united
in a vector

/\/:[nlng...nL]TGRL. 2)
An advantage of A against 7 is that it facilitates the
algorithm design. However, the final estimates are
commonly represented in the genomic location scale.

2) Its segments with constant copy numbers a;,
j € [1, L+1], are integer, although this property is not
survived in the logy Ratio. The segmental constant
changes can also be united in a vector

a= [a1 as ... aL+1]T S RL+1 s (3)
in which a; characterizes a segment between 7;_1 and
i; on an interval [i;_y,4; — 1].

3) The measurement noise in the log, Ratio is
highly intensive and can be modeled as additive white
Gaussian.

The estimation theory offers several useful ap-
proaches for piecewise signals such as those generated
by the chromosomal changes. One can employ the
wavelet-based [11, 12] filters, robust estimators [12],
adaptive kernel smoothers [13, 14], maximum likeli-
hood (ML) based on Gauss’s ordinary least squares
(OLS), penalized bridge estimator [15] and ridge re-
gression [16] (also known as Tikhonov regulariza-
tion), fussed least-absolute shrinkage and selection
operator (Lasso) [17], the Schwarz information crite-
rion-based estimator [18, 19], and forward-backward
smoothers [20-22].

We also find a number of solutions developed es-
pecially for needs of bioinformatics. Efficient algo-
rithms for filtering, smoothing and detection were pro-
posedin[11,12,19,23-28]. Methods for segmentation
and modeling were developed in [10, 18, 24,29-32].
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Figure 1: Simulated genome segmental changes with a
single breakpoint at n; = 50 and segmental variances o7 =
0.333 and Jl2+1 = 0.083 corresponding to segmental SNRs
v; = 1.47 and ;41 = 5.88: (a) measurement and (b) jitter
pdf. The jitter pdf was found by applying a ML estimator
via a histogram over 10* runs.

Sparse representation based on penalized optimiza-
tion and Bayesian learning were provided in [33-38].
These results show that a small number of readings V;
per a segment a; in line with large measurement noise
remain the main limiters of accuracy in the estimation
of CNVs. Picard ef al. have shown experimentally
in [29] that each segmental estimate is accompanied
with errors and each breakpoint has jitter which can-
not be overcome by any estimator.

For clarity, we generalize an experiment con-
ducted in [29] in Fig. 1. Here, a chromosomal part
having two constant segments a; = 0.7 and a;41 = 0
and a breakpoint n; = 50 is simulated in the pres-
ence of discrete white Gaussian noise having segmen-
tal variances o7 = 0.333 and o7, ; = 0.083 (Fig. 1a).
For the local segmental signal-to-noise ratios (SNRs)

N Y,
M T2 N T 3 4)
l +1

where A; = a;41 — a; is a local segmental change, it
corresponds to v, = 1.47 and %Jr = 5.88.

The breakpoint location n; was detected in Fig. 1
using a ML estimator [22] (one can employ any other
estimator). Measurements and estimations were re-
peated 10* times with different realization of noise.
Then the histogram was plotted for the detected break-
point locations and normalized to have a unit area.
The jitter probability density function (pdf) obtained
in such a way is sketched in Fig. 1b. Even a quick
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look at this figure assures that jitter at a level of 0.01
(jitter probability of 1%) has 10 points to the left (left
jitter) and 2 points to the right (right jitter). In other
words, with the probability of 99%, the breakpoint n;
can be found at any point between n = 40 and n = 52
that may be too rough for medical conclusions, espe-
cially if 7 is large. Let us add that simple averaging
which is optimal for the estimation of PWC changes
between the breakpoints is able to reduce the noise
variance by the factor of /V;. Noise reduction may
thus also be insufficient for medical applications if IV,
is small. So, effect of noise needs more investigations
and the CNVs estimate bounds are required.

2 Jitter in the Breakpoints

In follows from the experiment conducted in [29] and
supported by Fig. 1 that jitter in the breakpoints plays
a critical role in the estimation of the CNVs. Large jit-
ter may cause wrong conclusions about the breakpoint
locations. On the other hand, it may cause extra errors
in the determination of segmental changes especially
if N; and segmental SNRs occur to be small.

2.1 Laplace-Based Approximation

The results published in [29] and our own investiga-
tions provided in [39] and generalized in Fig. 1b show
that jitter in the breakpoints has approximately the
skew Laplace distribution. The discrete skew Laplace
distribution was recently derived in [40],

p(kldy, q1) = =) ~a) {

df, k
1—dq k

|k
Ql )

VAN

0,
0,
] 5)

1
where d; = e € (0,1)and ¢ = e =" € (0,1)
and in which k; > 0 and v; > 0 are coefficients de-
fined by the process. Below, we shall show that (5) can
serve as a reasonably good approximation for jitter in
the breakpoints of PWC signals such as that shown in
Fig. 1a if the segmental SNRs exceed unity.

Let us consider N neighboring to n; readings in
each segment. We may assign an event A;; meaning
that all measurements at points n; — N < j < ny
belong to [th segment. Another event I3;; means that
all measurements at n; < j < n; + N — 1 belong to
(4 1)th segment. We think that a measured value be-
longs to one segment if the probability is larger than
if it belongs to another segment. Because noise is
Gaussian and the segmental variances are different,
the Gaussian pdfs cross each other in two points, o
and 3;. The events A;; and B;; can thus be specified
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as follows:
2 2
(w <zj) ANz <Bi), o >07,,
Ay s ;> ap, 012 = Ul2+1 (6)
ap <wj < f, 012<012+1,
Bl<xj<al, al2<0l2+1?
By s zj < ay, of = o1 (7)
2 2
(5 <ay) ANz > B1), of >o0p,-

The inverse events meaning that at least one of the
points do not belong to the relevant interval are fllj =
1-— Alj and Blj =1- Blj-

Both A;; and B;; can be united into two blocks

A =
B, =

{Aui-m Ai-Nv1) - Ai—1)
{BiiyBigi+1) - - - Bii+n-1)} -

We think that if A; and B; occur simultaneously then
the breakpoint n; will be jitter-free. However, there
may be found some other events which do not obliga-
torily lead to jitter. We ignore such events and define
approximately the probability P(A;B;) of the jitter-
free breakpoint as

P(AlBl> = P(Ail—N . Ailleil e Bil—l—N—l) .
_ (®)
The inverse event P(A;B;) = 1 — P(A;B;) meaning
that at least one point belongs to another event can be
called the jitter probability.
In white Gaussian noise, all the events are inde-
pendent and (8) thus can be rewritten as
P(ABy) = PY(A)PY(B), )
where, following (6) and (7), the probabilities P(A;)
and P(B;) can be specified as, respectively,

o
1— [p(x)dz, of >0t ,,
Bi
T 2 2
P(A) = Im(x)de,  of =071, (10)
a
B
[ pi(z)dz, 0'l2 < 0'l2+1 ,
o7}
o
fpl+1(ac)d:v, 012 > O'l2+1 ,
B
7 2 2
P(B) = J pivi(@)de,  of =07 4¢11)
—00
B , ,
1- fpl+1(x)d$7 ] < 01415
\ ay
_<:c—r;l>2
where pj(z) = —~=e ° is Gaussian density.
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Let us now think that jitter occurs at some point

n;+k,0 < k < N, and assign two additional blocks
of events

Ay {Ay -~ Ay 1r),

By = {Bi+k.--Byyn-1}.
The probability Pk_ £ Pk_ (Alk*’zll(ilfk) ... Ail—lBl)
that jitter occurs at kth point to the left
from n; (left jitter) and the probability

A 1 _

Pf £ PM(AByg)- - By er—1)Bik)  that

jitter occurs at kth point to the right from n; (right
jitter) can thus be written as, respectively,

P(A)FPYN(B)), (12)
P(B))* PN H(B)). (13)

PNRA)L -
PN(A)[L -

P =
+
P =

By normalizing (12) and (13) with (9), we arrive
at a function that turns out to be independent on NV:

[P~1(A) -1k k<0, (left)
fl(k) = 1 3 k= 07
[P7Y(B)—1)* , k>0. (right)
(14)

Further normalization of f;(k) to have a unit area
leads to the pdf p;(k) = éf;(k‘), where ¢; is the sum
of the values of f;(k) for all k&,

¢z—1+z

where ¢'(k) = [P71(A;) — 1]F and pP(k) =
[P~1(B;) — 1]*. Now observe that, in the approxi-
mation accepted, f;(k) converges with k only if 0.5 <
P = {P(A),P(B)} < 1. Otherwise, if P < 0.5,
the sum ¢; is infinite, f;(k) cannot be transformed to
pi(k), and the [th breakpoint cannot be detected. Con-
sidering the case of 0.5 < P = {P(A), P(B)} < 1,
we conclude that InP < 0, In(1 — P) < 0, and
ln(l — P) < InP. Next, using a standard relation

PER

formatlons we bring (15) to

)+t (k)] 5)

where x < 1, and after little trans-

71 —1°

P(A)+P(B) -1

Y= T 2P(A) - 2P(BY)]

16)

The jitter pdf p;(k) associated with the [th break-
point can finally be found to be

L[ [P A) -1 k<0,
L PYBY) -1F , k>0,
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where ¢; is specified by (16) and 0.5 <
{P(4;),P(B;)} < 1. By substituting ¢ =

—1(4)—1andd; = P~Y(B;)—1, we find P(4;) =
1/(1 + ¢) and P(B;) = 1/(1 + d;), provide the
transformations, and finally go from (17) to the dis-
crete skew Laplace distribution (5) in which x; and
vy still need to be connected to (17). To find x; and

v, below we consider three points £k = —1, k = 0,

and £ = 1. By equating (5) and (17) we first
obtain W = (;l L P}(D]éB)l) for k = 1 and
A-d)(A-g)a _ 1 1-P(A) _
ll—dlqlq; @ — 7 P(Al)l for k = —1 that gives us
v = L5 where
K] lnm
P(A)1 - P(B,
1y = (Al (Bl (18)
P(B))[1 — P(A)]
For k = 0, we have % = ¢ and trans-
form it to an equation 7 — @ﬁyﬂ)m — Lﬁﬁ w =0,

which proper solution is

_ o) (L A (1 — ¢7)
Ty (l ¢ Hraa +m>2> )

1—k2

and whichz; = p; ' gives us
oy = Inx; ‘ (20)
In(zi/pm)

By combining v; with (19), we also provide a simpler
form for v;, namely
K

vy =—-——.

(2D
Inz

The discrete skew Laplace distribution (5) can
thus be used to represent jitter in the breakpoints sta-
tistically.

Now substitute the Gaussian pdf to (10) and (11),
provide the transformations, and find

1+ %[erlf(gf) —erf(gf)] v <
P(A) = serfe(g?) C =
erf(g)) —erf(e?)] >(;§)
slef(hf) —exf(h))) <
P(B) = 1 — Lerfe(hg) s =
+ 3lexf(hf) —erf(r))] >273ﬁ
(23)
where glﬂ = ﬂi;ﬁl 5,90 = a\lAﬁl hﬂ
+
Iglzl e ‘Z—ll‘ L, erf(z) is the error func-

tion, erfc( ) is the complementary error function. If
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v, # fy;r , the coefficients «; and [; are defined by

alVf_al+17[+:F|Al’

_ —F 4o In [ 2L
a3 I, T, v +2In %_,_
(24)

where I') = 4, — 7. Fory, = ", set g = A/2
and (5; = Fo0. Using (22) and (23), below we investi-
gate errors inherent to the Laplace-based approxima-
tion.

2.2 Errors in Laplace-Based Approximation

To realize how well the discrete skew Laplace dis-
tribution (5) fits real jitter distribution with differ-
ent SNRs, we consider a measurement of length M
with one breakpoint at n = K and two neighbor-
ing segments with known changes a; and a;_;. The
segmental variances 012 and ‘712—1 of white Gaussian
noise are supposed to be known. In the ML estima-
tor, the mean square error (MSE) is minimized be-
tween the measurement and the CN'Vs model in which
the breakpoint location is handled around an actual
value. Thereby, the breakpoint location is detected
when the MSE reaches a minimum. In our experi-
ments, measurements were conducted 10* times for
different noise realizations and the histogram of the
estimated breakpoint locations was plotted. Such a
procedure was repeated several times and the esti-
mates were averaged in order to avoid ripples. Nor-
malized to have a unit area, the histogram was ac-
cepted as the jitter pdf. The relevant algorithm can
easily be designed to have as inputs a;, a;—1, segmen-
tal SNRs +, and 'ler , M, K, and the number of point
K around K covering possible breakpoint locations.
The algorithm output is the jitter histogram “Jitter”.
An analysis was provided for typical SNR values pe-
culiar to the CNVs measurements using the HR-CGH
arrays. As a result, we came up with the following
conclusions:

1) The Laplace approximation is reasonably ac-
curate in the lower bound sense if the SNRs exceed
unity, (7, ,7;") > 1. Figure 2 sketches the Laplace
pdf and the experimentally found pdf (circled) for the
caseof 7,7 = 1.4 and 'yl+ = 1.38 taken from real mea-
surements. Related to the unit change, the approxima-
tion error was computed as ¢, % = (ML estimate —
Laplace approximation)x100. As can be seen, &pax
reaches here about 10% at n = K (Fig. 2b). That
means that the Laplace distribution fits measurements
well for the allowed probability of jitter-free detec-
tion of 90%. It narrows the jitter bounds with about
+2 points for 99%. Observing another example illus-
trated in Fig. 3 for v, = 9.25625 and fyfr = 2.61186,

ISBN: 978-1-61804-240-8 216

10° —
— ——
— A T
v =14 v =138
90%
L
=
ML estimate
i
b3 99% "
5 107 A b\‘lk
£ )
&
=g !
10° mfo/ h\x
—
T T
o [_ Skew Laplace P
[
10°] [ 1]
80 84 88 92 96  K=100 104 108 112 116 120
n
(a)
10 ‘ ‘
5 T T T
R 0-0—0-0-0—0-0-0—=0-0-0=0-0-0—0"0 \K\J O P00-0-00-6-0-6-0-0-0-0-00 |
g, /
10| Il Il /— Il

80 84 88 92 96 K=100 104 108 112 116 120

Figure 2: The jitter pdf approximated using the discrete
skew Laplace distribution and found experimentally (cir-
cled) using a ML estimator over 10* runs for v; =1l.4and
71+ = 1.38: (a) pdfs and (b) approximation errors.

we infer that the Laplace distribution fits the process
with very high accuracy if SNR > 1.

2) The approximation error may be large in the
sense of the narrowed jitter bounds if SNR < 1.

3) The jitter bounds commonly cannot be deter-
mined correctly for (7, ,7,") < 1.

3 Estimate Bounds

The upper bound (UB) and lower bound (LLB) peculiar
to the estimate confidential interval can now be found
implying segmental white Gaussian noise and accept-
ing the discrete skew Laplace-based jitter distribution
in the breakpoints.

Segmental Errors. In white Gaussian noise en-
vironment, simple averaging is most efficient between
the breakpoints as being optimal in the sense of the
minimum produced noise. Provided the estimate n; of
the breakpoint location n;, simple averaging applied
on an interval of N; = n; —n;_1 readings from n;_q
to n; — 1 gives the following estimate for the /th seg-
mental change

1 n;—1
= D, W (25)
J V=M1

which mean value is £{a;} = a; and variance is

g

2
~2 _ )
2= L. (26)

<
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Figure 3: The jitter pdf approximated using the discrete
skew Laplace distribution and found experimentally (cir-
cled) using a ML estimator over 10* runs fory;” = 9.25625
and %J“ = 2.61186: (a) pdfs and (b) approximation errors.

The UB for segmental estimates can be formed in

= E{a;} + 9\/ , where

f > 1 is commonly integer. However, nelther an ac-
tual a; = E{a;} nor multiple measurements neces-
sary to approach a; by averaging are available. We
thus specify UB and LB approximately as

the 0-sigma sense as a

a'B >~ G40 132 (27)
- J
J N;’
o2
apB = —9,/4 (28)
NJ

where # = 1 guarantees an existence of true changes
between UB and LB with the probability of 68.27% or
error probability of >z = 0.3173 thatis 31.73%; 6 = 2
of 95.45% or s = 0.0555 that is 5.55% and 6 = 3 of
99.73% or » = 0.0027 that is 0.27%.

Jitter Bounds. The jitter left bound (JLB) J*
and the jitter right bound (JRB) J lR can be determined
with respect to n; as follows. Because a step is unity
with integer k, we specify the jitter probability at the
kth point using (5) as
(29)

Pe(vy ) = plkld(y ), a(p )] -

We then equate (29) to > and solve it for the right and
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left jitter to have, respectively,

R _ |u, (1-d)d—q)

KR = Llln ) J 30)
Lo (1—-d)(1—q)

M= V’ﬂlnz(l—dlq,)J G

where |x| means the maximum integer equal to or
lower than z. The JLB and JRB can be defined with
respect to n; as JZL =y —le and JZR = nl—i-klR. Now
observe that n; is unknown and use the estimate n;. If
it happens that 7; lies at the right bound, then the true
n; can be found k:lR points to the left. Otherwise, if 7;
lies at the left bound, then 4; can be found k[ points
to the right. Approximate JLB and JRB are thus the
following

Ji
Jit

« _klRy
’fll—f-le.

(32)
(33)

12

Note that ¢ in (30) and (31) should be specified
in the #-sense as in (27) and (28).

UB and LB Masks and Algorithm. By combin-
ing (27), (28), (32), and (33), the UB mask Bg and
the LB mask B can now be formed to outline the
region for true genomic changes. The relevant algo-
rithm was designed in [41]. Its inputs are measure-
ments y,, breakpoints estimates 7, tolerance param-
eter , number L of the breakpoints, and number of
readings M. At the output, the algorithms produces
two masks: BY and BL.

The UB and LB masks have the following basic
applied properties:

e The true CNVs exist between BY and BY with
the probability determined in the #-sigma sense.

e If BY or BX covering two or more breakpoints is
uniform, then there is a probability of no changes
in this region.

e If both BY and BY covering two or more break-
points are uniform, then there is a high probabil-
ity of no changes in this region.

We notice again that the jitter bounds in B\ and
BL may have enough accuracy if (v, ,7") > 1.
They may be considered in the lower bound sense if
(7, »%") < 1. However, the approximation error is
commonly large if (v;", Wfr ) < 0.5. For details, see
Section 2.2.

4 Applications

In this section, we test some CNVs measurements
and estimates by the UB and LB masks computed
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in the three-sigma sense, § = 3, using the algorithm
[41-43]. Because the algorithm can be applied to any
CNVs data with supposedly known breakpoints, we
choose the 1st chromosome measured using the HR-
CGH array in [28] and available from [44].

The CNVs structure has 34 segments and 33
breakpoints. Most of the segments have the SNRs
exceeding unity meaning that the UB and LB masks
will have enough accuracy. The SNRs in segments
a1s and ag; range between 0.5 and unity which means
that real jitter can be here about twice larger. The re-
maining segments as3, dog, a31 and aso demonstrate
the SNR below 0.5 that means that the jitter bounds
cannot be estimated with sufficient accuracy. We just
may say that jitter can be much larger in the relevant
breakpoints.

Let us consider the CN'Vs measurements and esti-
mates in more detail following Fig. 4. As can be seen,
there are two intervals with no measurements between
the breakpoints %15 and %16 and the breakpoints %28 and
i29. A part of measurements covering the breakpoints
from %5 to %14 is shown in Fig. 5a. Its specific is that
the segmental SNRs are all larger than unity and the
masks thus can be used directly for practical appli-
cations. The masks suggest that errors in all of the
segmental estimates reach tens of percents. In fact, a5
and a7q are estimated with error of about 50%. Error
exceeds 30% in the estimates a7, dg, G192, and aq3. A
similar problem can be observed in the estimates of
almost all of the breakpoints in which left and right
jitter reaches several points.

A situation even worse with a part of the chromo-
some covering the breakpoints from 717 to i96. The
segmental errors exceed 50% here over almost all
segments. Furthermore, the UB is placed above LB
around %17, %20, and %22. That means that there is a
probability that these breakpoints do not exist. On the
other hand, estimates in the part covering i24—i2¢ are
not reliable. Thus there is a probability of no changes
in this region as well.

5 Conclusions

Effect of measurement noise on the HR-CGH array-
based estimates of the CNVs naturally results in seg-
mental errors and jitter in the breakpoints due to typ-
ically low SNRs. Errors can be so large that medical
expert would hardly be able to arrive at correct con-
clusions about real CN Vs structures irrespective of the
estimator used. Two rules of thumb for designers of
measurement equipment are thus the following: the
higher probe resolution the more segmental accuracy
and the larger segmental SNRs the lower jitter in the
breakpoints.
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Because of large noise, estimates of the CNVs
may bring insufficient information to experts and must
be tested by UB and LB masks. To form such masks,
the jitter distribution must be known. We have shown
that jitter in the breakpoints can be modeled using
the discrete skew Laplace distribution if the segmen-
tal SNRs exceed unity. Otherwise, the approximation
errors can be large and more profound investigations
of jitter will be required. The UB and LB masks pro-
posed in this paper in the 6-sigma sense outline the
region within which the true changes exist with a high
probability (99.73% in the three-sigma sense). Pro-
vided the masks, information about CNVs is more
complete and sometimes can be crucial for medical
experts to make a correct decision about true struc-
ture. Testing some measurements and estimates by
the UB and LB masks has revealed large errors ex-
ceeding (30...50)% in many segments. It was also
demonstrated that jitter in some breakpoints is redun-
dantly large for making any decision about their true
locations. We finally notice that further investigations
must be focused on the jitter statistics at low SNR val-
ues that is required to sketch a more correct proba-
bilistic picture of the CNVs.
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