

Abstract—One of the biggest challenges facing network

administrators is the management of increasing amount of devices
that are under their administration. The article deals with solution
how to automatically build a system image with communication
server and with advanced techniques of automated configuring such
devices based on OpenWrt Linux distribution. The solution is built as
a universal open source modular system and the server has been
developing within the framework of a BESIP project (Bright
Embedded Solution for IP Telephony) since May 2011. This open-
source modular system with overall concept and the architecture is
described in detail in this paper.

Keywords—Build system, Provisioning, OpenWrt, VoIP
Security, SIP.

I. INTRODUCTION

HE aim of the BESIP project is the development and
implementation of embedded SIP communication server.

Among all desired characteristics mainly belongs an easy
integration into the computer network based on open-source
solutions. This project serves as a secure and robust SIP IP
telephony infrastructure available for anybody. It offers the
prepared solution with integrated key components and the
entire system is distributed as a firmware image or individual
packages that might be installable from repositories. The main
goal is to provide a solution which should be easily installable
and configurable even without the deep knowledge of the

This research has been supported by the Ministry of Education of the

Czech Republic within the project LM2010005..
J. Slachta is a M.S. student with Dept. of Telecommunications, Technical

University of Ostrava and he is also a researcher with Dept. of Multimedia in
CESNET, Zikova 4, 160 00 Prague 6, Czech Republic (e-mail:
slachta@cesnet.cz)

J. Rozhon is a PhD. student with Dept. of Telecommunications, Technical
University of Ostrava and he is also a researcher with Dept. of Multimedia in
CESNET, Zikova 4, 160 00 Prague 6, Czech Republic (e-mail:
rozhon@cesnet.cz).

F. Rezac is a PhD. student with Dept. of Telecommunications, Technical
University of Ostrava and he is also a researcher with Dept. of Multimedia in
CESNET, Zikova 4, 160 00 Prague 6, Czech Republic (e-mail:
filip@cesnet.cz).

M. Voznak is an Associate Professor with Dept. of Telecommunications,
VSB-Technical University of Ostrava (17. listopadu 15, 708 33 Ostrava,
Czech Rep.) and he is also a researcher with Dept. of Multimedia in CESNET
(Zikova 4, 160 00 Prague 6, Czech Rep.), corresponding author provides
phone: +420-603565965; e-mail: voznak@ieee.org.

.

technologies that are used by our key components. Also it aims
to be scalable solution with unified configuration in mind [1].

Several open-source applications were adopted and
implemented into developed modules, however within the
implementation many modifications were required, especially
in the core module (OpenWrt) due to complicated porting of
applications into OpenWrt Buildroot. Our patches were
verified and accepted by OpenWrt community. The speech
quality monitoring tool was developed from scratch and
implemented in Java. BESIP can run on embedded devices as
well as on high performance devices. It requires at least 32
MB RAM and runs on the majority of OpenWrt supported
devices [2],[3].

II. STATE OF THE ART

As mentioned in the introduction, we discuss the
implementation of a SIP communication server solution which
would be an alternative to several current implementations.
The main advantage of our solution is the ability to easily and
quickly set up a full featured PBX on almost any hardware.
We can presume that almost all implementations are based on
open-source Asterisk PBX, web-interface for Asterisk and
with a GNU/Linux distribution on the base layer.

At present, there are several projects that offer multipurpose
IP telephony solutions for embedded devices and for
household or enterprise platforms. The initial project of a
GNU/Linux distribution which offers an easy set-up of IP
telephony in a few steps is the Asterisk@Home project. The
first version of this project was released on 29 April 2005.
This project integrated a web interface for Asterisk, Flash
Operators Panel to control and monitor PBX in real-time and
also offered a full FAX support within one bootable image for
almost any x86 PC. On 3rd May 2006 the development of this
project was discontinued and was replaced by its successor
Trixbox. However, the development of Trixbox does not seem
to continue any more. Two existing projects - AsteriskNOW
and Elastix – now offer an alternative to Trixbox.

The former, AsteriskNOW appears to be similar to Trixbox
– a packed GNU/Linux distribution with Asterisk with a
FreePBX web interface on top of it.

The latter, Elastix, is a bit more modular. Compared to any
other project, it offers a slightly more modular hierarchy to
facilitate the applicability to a multiple service server. The

Automation Techniques of Building Custom
Firmwares for Managed and Monitored

Multimedia Embedded Systems

J. Slachta, J. Rozhon, F. Rezac, M. Voznak

T

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 546

increasing popularity of embedded devices, such as Raspberry
Pi, is the reason why the Micro Elastix distribution was born.
However, all of those projects are either prepared for x86
machines only or for specific hardware. Micro Elastix only
supports three platforms, namely PICO-SAM9G45, Raspberry
Pi and MCUZONE.

None of the projects includes a security module that would
offer a complete IPS and IDS system to prevent attacks against
the SIP Registrar server. Also there is no module that would
monitor the quality of voice calls transmitted through an
integrated PBX. Thanks to the portability of the OpenWrt
distribution we can prepare a BESIP bootable image for
almost any device.

III. ARCHITECTURE OF BESIP

One of the biggest challenges during BESIP development
was to create or modify any existing Linux distribution to
serve our expectations. We needed to create an environment
that would be fully customizable to any purpose and also to be
easily maintainable through the time the BESIP would be
developed. The advantage of portability to any platform was
also welcomed. The choice of Linux distribution we wanted to
modify fell on OpenWrt Linux distribution. The reason why
we chose that system was the approach for building firmware,
the toolchain, crosscompiler and all applications are
downloaded, patched and built by scratch. This means that
OpenWrt does not contain any source code, it does only have
its build system with templates, patches and Makefiles with
procedures how to build a system and its packages for targeted
device. This approach allows us to create custom procedures
for build system and packages that can be modified at any
stage.

A simplified view on BESIP architecture is depicted in Fig.
1 which describes how the architecture is designed. The first
block, the build system, is a wrapper on the top of the
OpenWrt build system. It is designed for easy creation of
firmware images within the single text file which describes
what should be built for specific architecture and device we
are targeting on. With the build system comes also several
BESIP packages that are customizable from the OpenWrt
buildroot, e.g. before the firmware is built.BESIP packages
consists of several modules which provides functionality as:

• the PBX module to accomplish VoIP functionality,
• the Monitoring module to monitor speech quality and

the system itself,
• the Security module to provide IPS/IDS system,
• the Core module as a glue to all services among

themselves and to provide intuitive interface to them.

The security module is based on SNORT; SNORTSam and

iptables [4]. In addition to this, the Kamailio ratelimit and pike
module is used for defending attacks.

The monitoring module exploits a tshark package and our
java code which interprets its results and gives information
about particular speech quality. The Zabbix agent is used to

report basic states of the entire system and finally the PBX
module is made from Kamailio in conjunction with Asterisk.

Fig. 1 Architecture of BESIP system.

The Core module is a shell library (providing functions for

all executable BESIP scripts) with executable files which
makes all mentioned services fully working.

IV. BUILD SYSTEM FOR BESIP

Before we describe the concept of BESIP system, it is
necessary to introduce the BESIP build system which makes
automation of creation system images much easier. As said
above, BESIP is based on GNU/Linux distribution OpenWrt
which is built on top of the OpenWrt Buildroot. Buildroot is a
set of Makefiles and files that allows to compile cross-
compilation toolchain and to generate by that toolchain
resulting cross-compiled applications into a root filesystem
image to be used in a targeted device. Cross-compilation
toolchain is compiled by host compilation system which is
provided by any GNU/Linux distribution.

In the beginning of BESIP development, we met issues that
were holding us back. We could not test all changes
immediately, we had to recompile all code and generate
images nearly always when we ported new application,
modified post installation scripts or when cross-compilation
toolchain has changed. Also, the system behaves differently
during testing if it is new root filesystem image, or modified
root filesystem that has been run more than once. At least
those issues led us to create an easy interface that will ease the
creation, automation and functional testing for system images.

BESIP build system is a set of scripts, Makefiles and
definition files that make an easy interface to OpenWrt
Buildroot. We can consider the main Makefile to be as a core
of the BESIP build system. It performs all atomic operations
with OpenWrt Buildroot, works with source code management
systems (to update/revert/any operation with local copies of
OpenWrt source codes), patches OpenWrt Buildroot and
executes images as virtual machines. Those commands might
be used by any user or by autobuild scripts, which will be
described after.

On the top of the core Makefile is autobuild script. This
script calls all atomic operations within more complex
parameterized operations whose variables are defined in
specific target files. Those target files are user defined and on
the basis of those files are configuration files for OpenWrt

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 547

Buildroot created. Once we have configuration files the system
images could be created by calling autobuild.sh script with
command build and parameter containing the name of the
target file.

The following simplified example shows, how to create
target file.

TARGET_CPU=x86
OWRT_NAME=trunk
TARGET_NAME=virtual_\$(BESIP_VERSION)-
owrt_\$(OWRT_NAME)
TARGET_QEMU=i386
TARGET_QEMU_OPTS=-m 512
OWRT_IMG_DISK_NAME=openwrt-\$(TARGET_CPU)-
generic-combined-squashfs.img
BESIP_PACKAGES= gnugk=y suricata=y
EMBEDDED_MODULES += SATA_AHCI VMXNET3

The following example shows how to build system images
based on the target file.

#./autobuild.sh build virtual-x86-trunk

Such techniques can be used for any purpose of automated
building system images for any device or platform supported
by OpenWrt. Those could be firmware images for campus
access points, specialized network probes, virtualized
multimedia servers or any other devices.

V. CORE MODULE

The role of the Core module is to provide a glue among all
services that served by all BESIP modules. The most
important part of the Core module is the BESIP shell library
that provides functions for all utilities and scripts used by
BESIP system. Functionality of a Core module complements
utilities for configuration management and for simplified
configuration of system image. With all those utilities comes
along also default configuration which prepares all module
services into fully functional state with all BESIP modules
running and operational. Also, the role of this module is to
switch any existing OpenWrt environment to BESIP
environment while the device is booted the first time or the
BESIP environment is used and ran the first time.

A. BESIP Environment

BESIP environment handles tasks which has to be
performed at several stages in OpenWrt operating system.
After the BESIP firmware image is built at this stage the
operating system behaves as clean operating system with
installed dependencies required by BESIP package and its
submodules. On the first boot the init script is performed and it
waits until the overlay filesystem is mounted. When the
filesystem is mounted the first_boot procedure is performed.
This procedure incorporates the initial setup of the system and
preparation configuration files. The main advantage of this
procedure is the applicability to any existing setup of OpenWrt
system.

Another mandatory part of BESIP system is an executable
application that provides functions to manage following
procedures:

• Generates provisioning data for connected phones,
• resetting system image into factory defaults,
• performs system upgrade,
• controls internal BESIP modules,
o configuration and management of security module,
o importing and setting up a dial plan for PBX module,

• collects information for crash reporting to be used for
debugging.

B. Provisioning Client

The impetus for development of provisioning tool arose
during the period when firmware images created by BESIP
build system were deployed to computers, routers and wireless
access points. Those machines were not configured for target
networks, which were supposed to be deployed on. Because
the target configuration does not depend on a person which
builds the system, but on the network administrator, then
configuration should lay outside of a BESIP firmware image.
The creation of such tool bring a question how should the
target device should fetch and apply its configuration.

In the build system, we can pass static information about our
provisioning server which provides configuration (during build
time). We can also change this information in firmware image.
This information can be used for protocols which translates
one kind of information to another. As an example we can use
DNS protocol and its TXT records. The target configuration
could be stored on a server designated within an URI in a
variable from TXT record which is obtained from static URL
provided by BESIP build system. This solution is replicable
for any protocol which allows distribution that kind of
information (LLDP, DHCP or any other else).

An example how to resolve UCI provisioning URI:

host -t txt provdomain
provdomain descriptive text
"provuri=http://12.34.56.78/uciprov/"

If a device knows where to obtain configuration from then

the device can construct all provisioning URI addresses for
each device state it needs. This approach is needed when
system administrator needs to differentiate configuration for
devices which starts up the first time, if those devices are
refreshing its common device configuration on a regular basis
or if it is the configuration that is obtained after device startup.
UCI provisioning client written for BESIP currently handles
only configuration files that are handled by UCI system
(Unified Configuration Interface) for centralized
configuration. If a device knows where to obtain configuration
from, then the device can obtain configuration data from
ordinary transport protocols designated in provisioning URI.
The benefits that BESIP draws from OpenWrt builds upon the
UCI configuration system which is based on plain text
configuration files with firmly defined structure. This

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 548

configuration is obtained using software for file retrieval from
network resources, e.g. wget, and immediately imported into
UCI.

The client side of UCI provisioning currently has several
stages:

1. Waiting for the system to be ready to be provisioned,
2. Stage 1 - receive provisioning URI using supported

protocols,
• For each supported protocol try to receive provisioning

URI address,
• Construct a list of URI provisioning addresses based

on received URI address.
3. Stage 2 - obtain configuration from URI received in stage

1,
• For each interface try to obtain configuration data.

4. Stage 3 - apply received configuration.

The server side of UCI provisioning is currently solved by

providing static file structure with files which consists of
export provided by UCI system. See sequence diagram
depicted in Fig. 2 to see how the UCI provisioning works.

Fig. 2 Sequence diagram of UCI provisioning client.

VI . PBX MODULE

The PBX module is a key part of the BESIP project. It
operates as SIP proxy or SIP B2BUA, depending on
configuration, and ensures a call routing. Asterisk is used for
call manipulation and for the PBX functions. Kamailio is used
for the proxying SIP requests, the traffic normalization and for
the security [5]. There are always two factors when developing
VoIP solution the first one is high availability and reliability,
the second one is an issue of advanced functions. Many
developers try to find a compromise, we have implemented
both, and our BESIP is able to adapt to the users requirements.
More complex system can handle many PBX functions such as
a call recording or an interactive voice response but due to the

bigger complexity it is more susceptible to fault. On the
opposite side, pure SIP proxy is easier software, which can
perform call routing, more fault tolerant, but it is more difficult
to use the advanced PBX functions [6].

VII. SECURITY MODULE

Security module is very important part of BESIP and all the
time, it was considered to make the developed system as
secure as possible. Next to this, entire system has to be fault-
tolerant, monitored and protected from attacks. It means that if
the device is under attack, only attacker has to be blocked, not
entire system or other users. If there is some security incident,
BESIP immediately solves the situation and notifies this event
in a detailed report to administrator.

The attack are recognized and processed by SNORT rules,
the source IP address is automatically sent into the firewall by
SNORTSam and the intruder’s IP is blocked. This is very
flexible, reliable and effective implementation. Dropping
attack based on IP directly in the Linux kernel is much more
efficient than to check messages on the application level. Only
first messages are going to SNORT filter. When SNORT
identifies a suspicious traffic, next messages from the same IP
are blocked.

Fig. 3 Attack effectiveness based on REGISTER flood.

If more soft faults appear from some IP, it is blocked at the

IPTABLES level; this approach can effectively block
incorrectly configured clients and servers. For example, if a
client sends REGISTER with proper credentials, it is not
obviously security attack but the client attempt to register
again and again, with every registration requires computing
sources at SIP REGISTRAR server. Such attempts can be
denoted and blocked for a time interval. Administrators can
use Zabbix agent inside BESIP to gather all information
directly into their monitoring system. The monitoring is very
important part of the security module and BESIP team was
already focused on the issue in early design [7]. Partially,
BESIP is resistant to some kind of DoS attacks. It depends on
hardware used. If the hardware is strong enough to detect some
security incidents on application level, the source IP is
immediately dropped. Low performance hardware cannot
handle such detection on application level. In such case, it is

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 549

better stop DoS attacks before it reaches BESIP. For example,
SNORT on a dedicated machine will be much more flexible
than if is an integral part of VoIP system. Therefore, we
recommend using an external IPS system to make VoIP
service robust and secure. Nevertheless BESIP includes own
IPS/IDS system [8], [9].

The features of our security module were verified in test-bed
and results are depicted in Fig. 3 [7]. The CPU load was
monitored during trivial SIP attacks. The line SSI (Snort,
SnortSam, IPtables) represents the response in case of active
security module in BESIP whereas next dependencies were
measured without SSI. There were emulated only two types of
DoS attacks, namely REGISTER flood and INVITE flood. In
order to generate these attacks, we used sipp generator and in
case of INVITE also inviteflood tool. The dependencies in
both figures clearly prove the ability of security module to
mitigate the performed attacks.

VIII. CONCLUSION

As we have mentioned, BESIP consists of several
components, which are distributed under GPL as an open-
source solution. A few of them have been fully adopted such
as components in Security and PBX modules, some of them
modified, concerning the Core module and finally we have
developed own tool for Speech quality assessment. The
contribution of our work is not only hundreds of hours spent
on the development, on the coding BESIP system, we bring a
new idea of the unified configuration management, with
unified CLI syntax which enables to configure different
systems, Asterisk and Kamailio in our case.

BESIP is distributed as a functional image for several
platforms, mainly for x86 platform, which is also possible to
run it on any virtualization x86 software. There are several
example firmware images for several target devices, such as
TP-Link access points or Raspberry PI computer.
Configuration is available through web-browser, SSH client or
to be provisioned using supported provisioning protocols.
After the testing, version 2.0 will be released; a new release
2.0 will be based completely on NETCONF with one API to
configure the entire system. Next to this, CLI syntax has been
developing and will be connected to NETCONF. CLI will be
independent of internal software so if some internal software is
modified, there will be no change in configuration. Even more,
CLI and NETCONF configuration will be independent on
hardware and version. To export configuration from one box
and to import it to the next one will be a simple task. Users
will modify only one configuration file to manage entire box.
Project pages are available at [10], binary images from the
auto-build system can be downloaded from [11] and source
codes can be checked out via SVN from the same page as well
[11].

REFERENCES

[1] M. Voznak, F. Rezac: “Threats to voice over IP communications
systems”. WSEAS Transactions on Computers, Volume 9, Issue 11,
2010, pp. 1348-1358.

[2] F. Abid, N. Izeboudjen, M. Bakiri, S. Titri, F. Louiz, D. Lazib:
“Embedded implementation of an IP-PBX/VoIP gateway”. 24th
International Conference on Microelectronics, December 2012, IEEE,
Article number 6471377.

[3] N. Titri, F. Louiz, M. Bakiri, F. Abid, D. Lazib, L. Rekab: “Opencores
/Open-source Based Embedded System-on-Chip Platform for Voice
over Internet”. INTECH: VOIP Technologies, pp. 145-172.

[4] J. Safarik, F. Rezac, M. Voznak: “Monitoring of Malicious Traffic in IP
Telephony Infrastructure”. Technical Report, 10p., December 2012.

[5] M. Voznak, J. Safarik: “DoS attacks targeting SIP server and
improvements of robustness”. International Journal of Mathematics
and Computers in Simulation, Volume 6, Issue 1, 2012, pp. 177-184.

[6] J. K. Prasad, B. A. Kumar: “Analysis of SIP and realization of advanced
IP-PBX features”. 3rd International Conference on Electronics
Computer Technology, Volume 6, 2011, IEEE Article number 5942085,
pp. 218-222.

[7] M. Voznak, K. Tomala, J. Vychodil, J. Slachta: “Advanced concept of
voice communication server on embedded platform”. Przeglad
Elektrotechniczny, Volume 89, Issue 2 B, 2013, pp. 228-233.

[8] D. Endler, M. Collier: “Hacking Exposed VoIP”. McGraw-Hill Osborne
Media, 2009.

[9] D. Sisalem, J. Kuthan, T.S. Elhert, F. Fraunhofer: “Denial of Service
Attacks Targeting SIP VoIP Infrastructure: Attack Scenarios and
Prevention Mechanisms”. IEEE Network, 2006.

[10] Management of BESIP Project, LipTel Team, 2014,
https://besip.cesnet.cz

[11] Project BESIP, https://homeproj.cesnet.cz/projects/besip/wiki/Download

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 550

