
Cellular Automaton pRNG with a Global Loop for
Non-Uniform Rule Control

Alexandru Gheolbanoiu, Dan Mocanu, Radu Hobincu, and Lucian Petrica
Politehnica University of Bucharest
alexandru.gheolbanoiu@arh.pub.ro

Abstract—Pseudo-random number generation is an important in-
gredient of many cryptography applications, as well as scientific
applications based on statistical sampling, e.g., Monte Carlo methods.
Several methods have been proposed for generating pseudo-random
numbers, but these are generally either (i) based on cryptographic
cypher algorithms and expensive to implement in hardware (e.g., large
silicon area, low energy efficiency) or (ii) based on linear-feedback
shift registers, which can be efficiently implemented in hardware but
are not sufficiently random. This paper presents a pseudo-random
number generator which utilzes a configurable cellular automaton
network which generates the output stream of numbers, and a feed-
back loop which monitors the randomness properties of the output
stream and adjusts the parameters of the network in order to optimize
its cryptographic performance. We demonstrate that introducing this
additional feedback loop increases the overall entropy of the system,
improving the quality of the pseudo-random sequence over other
cellular implementations or LFSRs. We also analyze the effect
of multiple configurations of the proposed generator architecture.
We evaluate the generator against several standard benchmarks to
illustrate its performance and we also provide an evaluation of its
hardware implementation which demonstrates comparable implemen-
tation efficiency to LFSRs.

Keywords—cellular automaton, random number generator, LFSR,
feedback, FPGA.

I. INTRODUCTION

Random number generators (RNGs) are essential for the
generation of cryptographic keys for secure online communi-
cation, and have become a necessary part of any digital system.
Other applications of RNGs are are statistical simulation
algorithms based on the Monte-Carlo method and even video
games. Since all of these applications can be executed on, e.g.,
a desktop computer, the processing system needs to include
a RNG of sufficiently good quality. A true RNG is desirable
because one cannot predict its output under any circumstances,
and once a sequence of such numbers has been generated,
someone cannot predict if and when it will be generated again
[1]. True RNGs are difficult to implement in a digital system
because such a system is inherently deterministic, but physical
processes like the initialization of random access memories
may be utilized for RNG purposes [cite something here].

The easier approach is to combine different algorithms and
mathematical functions for the purpose of generating numbers
that create the appearance of randomness. These generators are
called Pseudo Random Number Generators (PRNG). The most
popular such PRNGs are the Linear Feedback Shift Registers
(LFSR) due to their efficient hardware implementation [2].
However, these generators present an unwanted property: pe-
riodicity. Thus, after a sequence of N numbers, where N is the

repetition period of the generator, the exact same sequence will
start being generated again. Attempts to increase the period
N are made through the use of Non-Linear Feedback Shift
Register (NLFSR) [3] [4] [5]. The research on these generators
is still ongoing and the construction of large NLFSRs with
guaranteed long periods remains an open problem.

Several researchers have attempted to harness the properties
of cellular automata for random number generation. A cellular
automaton (CA) is a network of cells in a finite dimension
space, whereby each cell has a set number of possible states
which are updated periodically based on a rule which takes
into account the previous state and the states of other cells
in a neighbourhood. A CA may be uniform, meaning all
cells have the same rule, or non-uniform, with different cells
having different rules. The one-dimensional (1D) and two-
dimensional (2D) automata have seen more research interest,
with the most well-known cellular automaton being Conway’s
Game of Life [6], a 2D automaton which has been proven to
be Turing complete [7]. Much of the research on CA-based
RNG has focused on the identification of CA rules which
lead to good randomness properties. Wolfram in particular has
performed extensive analysis on 1D cellular automata rules,
and for the remainder of this work we will utilize the rule
naming conventions defined in [8].

In this work, we attempt to create a one-dimensional CA
RNG with good randomness properties by analyzing the
cell network in its entirety. Instead of integrating different
algorithms and hardwired mechanisms within the cells, i.e.,
searching for the perfect (and most likely complex) CA rule,
we maintain the simplicity and flexibility of the cell in order
to facilitate hardware implementation. With the addition of
a feedback mechanism, which we call the global loop and
which is able to reconfigure the cell rules, RNG properties are
improved, as demonstrated with industry-standard randomness
benchmarks.

This paper is structured as follows. Section II will present
existing work on PRNGs, with focus on methods based on
cellular automata. Section III introduces the proposed system
architecture and Section IV describes its implementation.
Section V presents the evaluation methodology and results,
while in Section VI we make concluding remarks and outline
areas for future research.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 415



II. CELLULAR AUTOMATON RNGS

In 1986, Stephen Wolfram first tried to construct RNGs
through the use of Cellular Automata [9]. His main focus was
to demonstrate that one-dimensional uniform CA networks
are able to generate random numbers of higher quality than
most LFSR generators [10]. Since then, multiple works have
attempted to improve on the idea of 1D CA RNGs [11] [12]
[13]. Some attempts have even been made on the construction
of 2D CA RNGs [14]. Most of these studies focused more on
the CA cell itself, the rules to be used and the evolution of
set cells, resulting in complex circuits which, in most cases,
are impractical.

Wolframs work focused on analyzing the potential of dif-
ferent CA rules for random number generation with the use of
a one-dimensional uniform CA network. In order to do this,
he applied, in turn, each of the 256 possible rules to all the
cells forming the one-dimensional network and, using a suite
of randomness tests, measured the potential of each rule to be
used in a RNG [10]. His study concluded with a taxonomy of
CA rules, consisting of three classes defined by their potential
for randomness, class I being the most predictable and class
III being the most chaotic, out of which rule 30 best creates
the appearance of chaotic behavior. The first problem that
remained was that two output streams generated through the
use of the same CA rule, but with different initial seeds,
presented a strong correlation with each-other in both time
and space. The second problem was the periodicity that the
generated numbers presented.

In 1989, Hortensius et al. proposed the first non-uniform CA
network for random number generation [15]. Instead of having
the entire network of cells apply the same rule, two or more
rules would be utilized by different cells in the network. In his
research, he evaluated a combination of cells with rule 90 and
cells with rule 150 within the same network. This configuration
reduced the correlation between two output streams and the
periodicity of the generated numbers.

In 1999, Tomassini et al. reanalyzed the potential for chaos
of the CA rules in uniform networks, but this time, through the
use of the DIEHARD evaluation suite [16]. He also pointed
out the importance of site spacing and time spacing in the
attempt to reduce the correlation of two random bit streams
generated with the same CA rule, but with different initial
seeds. Unlike the traditional RNG, with site spacing, not all
bits generated at one moment by the network are utilized
for the output number. And, with time spacing, only bits
generated at a certain moment of time are used for the output
number. His evaluation concluded that, utilizing site and time
spacing, rule 105 presents the most chaotic behavior, followed
by 165, 90 and 150. He also introduced the idea that individual
cells can improve their randomness quality through genetic
algorithms. Each cell would be able to change its rule at the
end of a generation cycle depending on the entropy it and its
neighbors presented [16]. This concept was termed cellular
programming, and focused on the idea of self-evolving non-
uniform CA networks, but on a local scale. From this idea,

there have been many published researches that focus on the
local evolution and control of a CA cell [17] [18].

Other attempts have been made at improving the CA RNGs
through the use of traditional genetic evolution algorithms
where the network is analyzed in its entirety and modifications
are applied to all the cells depending on the results [19] [20].
This practically steps away from the CA network itself, ignores
the local loops made between the cells, but applies a global
loop, whereby the output of the network is analyzed and, based
on different genetic algorithms, modifications are made to the
entire network. This type of configuration holds promise for
improved randomness properties, but has not been formally
evaluated in the existing literature, until now. Our work aims
to construct and evaluate such a CA configuration, with focus
on both its RNG properties and the efficiency of its hardware
implementation.

III. GLOBAL FEEDBACK CA RNG

Taking guidance from previous work, we propose to con-
struct a minimalistic CA RNG which is able to satisfy most
of the quality requirements that are now placed on RNGs
for cryptographic use. Our goal is to design and formally
evaluate a system which is capable of outputting a high entropy
sequence of numbers whilst maintaining the hardware resource
usage to a minimum.

The principal challenge towards the intended goal is how
to prevent the CA RNG from remaining stuck in a steady
state or in short cycles. This requirement may be achieved in
one of two ways, either by implementing a generic algorithm
in each cell for rule updates, or by implementing a global
feedback loop which is be able to control the entire network
by updating rules in individual cells. Because we desire to
obtain a small structure, the area and complexity of individual
cells must be minimized. Therefore, we choose to implement
a global feedback loop to control the rules within the CA
network based on certain criteria.

Another design choice is whether he global loop can appoint
only one rule to the whole network, resulting in a uniform
network, or appoint several different rules to different parts of
the network, resulting in a non-uniform network. In order to
fully take advantage of a global loop, and in following with
the findings of previous work on non-uniform CA, we elect to
implement a feedback loop which is able to control the rule
for each individual cell within the network. Therefore, the CA
network will be generally non-uniform and the cells will be
capable of retaining rules applied to them by the external loop.

As previously stated, the global feedback loop will collect
the output of the network, analyze its properties and apply
the required modifications, i.e., change the rules of different
cells individually. This process is illustrated in Figure 1. An
important design consideration is the nature of the feedback.
Evaluations were carried out on negative feed-back mecha-
nisms, e.g., an external system would calculate the entropy of
the network and, in case is decreasing, modify the cells rules
in an attempt to revitalize the RNG, but these proved incapable
of ensuring good randomness. Similar results were obtained

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 416



Fig. 1: CA with Global Feedback Loop

utilizing a toggle checker system to count the transitions
of each bit of the CA network output within a time frame
and, should a bit get stale, call for a rule change. Therefore,
negative feedback was discounted and the focus was switched
to positive feed-back mechanism, whereby the mechanism
collects the generated output of the CA network and, at fixed
intervals of time and through the use of the entropy collected,
applies a new rule to a randomly selected CA cell.

Another important design consideration is the selection of
the new rule to apply to a given cell. Randomly generating a
new rule between 0 and 255 was not expected to yield good
results, since most CA rules do not exhibit good randomness
properties. Additionally, this architecture requires that each
cell contain the circuits required to implement all 256 rules,
leading to large area footprint and circuit complexity. There-
fore, our proposed mechanism chooses between a fixed set
of rules. Based on the research done by Tomassini [16], we
selected rules 105, 165, 90 and 150 to be the only candidates
for a new rule. We decided for all cells to follow rule 105
initially, not only because Tomassinis work proved rule 105
to provide the best randomness, but also because it allows CA
oscillation even when the initial state of cell, i.e., the seed, is
all zeroes or all ones. For example, if the seed is 0 the CA
will oscillate between 0x0000...0000 and 0xFFFFFFFF until
the feedback mechanism applies the first rule change, and will
subsequently exhibit random output.

Finally, we add to the design a site and time spacing
mechanism, as illustrated in Figure 2 in order to avoid the
output correlation problems which usually occur with CA
RNGs. From the output of the entire CA network, denoted N ,
of length LN , the site spacing mechanism selects and passes
on only the outputs of cells located at set spatial intervals.
The length of the interval is denoted Ss. Consequently, for a
site spacing value of 2, only the outputs of cells 0, 3, 6, 9,
etc. are utilized for generating an output number. We denote S
the output after site spacing, of length LS . Conversely, if the
system is required to generate random numbers of a certain
length LS , with a set site spacing, the required number of
CA cells is given by Equation 1. The higher number of cells
required increases the CA RNG circuit size, and it is desired
to have a site spacing value as small as possible.

LN = (Ss + 1) ∗ LS (1)

Fig. 2: CA with Site and Time Spacing

The time spacing mechanism forwards, at regular time
intervals, the output values of the site spacing mechanism
to the output of the CA RNG. For example, if the numbers
S0, S1, S2, S3, S4, S5, etc. are output by the site spacing
mechanism, with a time spacing value of 1, only S0, S2, S4,
etc. are selected. This mechanism decreases the correlation of
consecutive output words but reduces the RNG throughput.
The output of the time spacing mechanism is denoted T . The
time spacing value Ts is also desired to be as small as possible,
in order to reduce the number of circuit operations per output
word, and therefore increase the circuit energy efficiency.

In order to select one of the four available CA cell rules,
the rule selection mechanism collects the output of the site
spacing and determines the selection bits R0 and R1 according
to Equations 2 and 3. These two bits will be generated using
the collected randomness of the site spacing output.

R0 = (

LRN/2−1∑
i=0

Si +R0) mod 2 (2)

R1 = (

LRN−1∑
i=LRN/2

Si +R1) mod 2 (3)

At each CA network generation cycle, a new value is output
by the site spacing circuit and a new rule is selected. The
cell selection block determines when and which cell is to be
modified. There are three possibile strategies for the timing
of rule changes, (i) at each generation cycle, (ii) at a fixed
interval or (iii) at a random interval. Strategy (i) is expected to
be inffective, since the cell selection mechanism does not have
enough time to gather entropy information, which leads to a
poor rule selection randomization. Strategy (iii) is discarded
because the system has a single entropy source and both the
change interval and cell selection would be calculated based on
it, resulting in a strong correlation between the two. Hence, we
opted for strategy (ii), updating the cell rules ar fixed intervals
of time. When the time to change a rule is reached, the block

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 417



Fig. 3: Final CA RNG Structure

reads the current time spacing output and, based on its value,
selects a cell C to have its rule changed with the one currently
selected by the rule selection block. This strategy creates a new
condition: the rule change interval needs to be at least greater
than the time spacing interval, else two consecutive changes
may be applied to the same cell only because time spacing
has not yet generated a new number.

C = Ts mod LN (4)

The two mechanisms described above ensure a good ran-
domization of the cell rules based only on the output of
the network and with minimal circuit complexity and size.
We provision an additional external connection to the rule
selection block so that the user may input extra random values
in order to increase the gathered entropy. The CA network is
initially uniform, with rule 105 controlling all the cells, but
becomes non-uniform after the first interval of the rule change
mechanism in the feedback loop. Consequently, the quality of
the first generated numbers will strongly depend on the initial
seed. To remove this weakeness in the RNG design, all output
numbers of the RNG are discarded until a certain number of
rule changes has have occurred. This is called the warm-up
period and in order to control it, we introduce an additional
block into the design. The warm-up period value represents
the number of rule changes that must occur before the output
numbers are considered valid. Notably, another reason for not
using a random interval for rule changing is that the length of
the warm-up period could not be predicted and may in some
cases become very large.

Most parameters described above as being part of the
different mechanisms (time spacing, rule change interval and
warm-up period) are controllable by the user depending on
the required performance. The generated number length and
site spacing values are constant because they directly impact
the number of cells used and the system structure. Tomassini
recommends in his work a site spacing of 1 or 2 and a time
spacing between 1 and 4. The optimal values for the rest of the
parameters are determined after implementation and analysis
of the RNG.

Fig. 4: CA Cell

Fig. 5: CA with null site spacing

IV. IMPLEMENTATION

In order to enable the evaluation of the proposed CA
RNG hardware structure, we implemented it in VHDL. In
our proposed CA RNG architecture, in order for the cells
to be able to retain the assigned rule and the current state,
each requires 9 flip-flops, 1 for the current state and 8 for
the rule storage. Because each cell may have only one out of
four rules, two flip-flops for rule storage would be enough to
retain a corresponding encoded value. However, we desired
to implement a more flexible structure which allows us to
experiment with multiple feed-back rule control mechanisms.
Hence, each cell requires an additional 8 bit port for the new
rule input and an update enable 1 bit port. A diagram of the
cell, with all inputs and outputs, is presented in Figure 4.

The CA cells are arranged as a 1D network with its
extremity cells sharing a connection, as illustrated in Figure 5.
As mentioned in Section III, the number of required cells is
given by the site spacing value and the generated number
length. For our analysis, we select a length of 32 bits and,
with a site spacing of 0 or 1, we require 32 or 64 cells within
the network. In order to reduce wiring fan-out issues, new
rules are transmitted via a common 8 bit bus to all the cells,
while each cell has an individual enable signal.

The site spacing mechanism is implemented by connecting
only the appropriate state outputs of the network to the output.
The time spacing mechanism contains a counter-based timer
which, upon reaching the selected time spacing interval, sig-
nals a buffer to store the output of the site spacing mechanism.
The output of the buffer is connected directly to the output of
the RNG. The cell selection block and warm-up validation
block also consist of counter-based timers which signal when
the rule change takes place and when the warm-up is done.
The rule selection mechanism is illustrated in Figure 6 and
consists of a memory for the two rule selection bits, i.e., 2
flip-flops, which are updated according to Equations 2 and 3
at each generation cycle.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 418



Fig. 6: Feed-Back Rule Selection

The implementation is parametric, with 4 architectural
parameters: site spacing, time spacing, warm-up period and
rule change interval. We encoded these configurations with
a unique name containing all the parameters: S[site spac-
ing]T[time spacing]R[rule change interval]W[warm-up pe-
riod]. For example S1T3R5W50 is the configuration with site
spacing 1, time spacing 3, rule change interval 5, and the
warm-up period is 50 rule change intervals.

V. EVALUATION

This section presents an evaluation of the proposed CA
RNG structure with regard to randomness properties and the
efficiency of its hardware implementation on FPGA, i.e., area
and maximum frequency.

A. Methodology

We targeted the Xilinx Virtex-6 FPGA architecture for
the evaluation of the implementation efficiency, and utilize
LUT count and maximum frequency as metrics. To determine
whether the system exhibits good randomness properties,
we utilize three popular RNG evaluation suites, namely the
ENT [21], DIEHARD [22] and NIST [23] suites. Our intention
is to verify that the RNG performs well on all the selected
suites, of which ENT is the least demanding and the NIST,
issued by the foremost authority on public information security
in the United States, is the most difficult.

Simulations are performed with site spacing 0 and 1, time
spacing 0 to 5, warm up period of 50 and rule change interval
of 1 to 5. Utilizing these parameter values and the associated
simulation environment we obtained a set of 30 sequences
of random numbers, each generated by the CA RNG with a
specific configuration. Site spacing beyond 1 is not evaluated
because the hardware implementation is expected to become
unfeasably large. Of these 30 configurations, we keep only
those that do not exhibit short cycles, i.e., an output value is
not observed more than once in every seven consecutive output
words.

The first evaluation is performed on ENT, which runs 7 tests
to help discern the quality of the random sequence. These tests
are entropy, optimum compression, chi square distribution,
arithmetic mean, Monte Carlo value for Pi, and serial corre-
lation coefficient. ENT is the only benchmark which outputs
a set of absolute results for the 7 tests it runs. Although it
is not generally regarded as the most relevant benchmark for
random number generators, the fact that it outputs absolute
values allows us to utilize the results for selecting a number
of configurations to go forward. We select the best performing

TABLE I: Inter-stream correlation

Configuration Seed 1 Seed 2 Correlation
S1T2RxW50 Binary ’0’ Binary ’1’ -0.0038
S1T2RxW50 Pattern 0xA Pattern 0x5 0.001747
S1T3RxW50 Binary ’0’ Binary ’1’ 0.000995
S1T3RxW50 Pattern 0xA Pattern 0x5 -0.005248

configurations for each test, which continue to the DIEHARD
and NIST statistical benchmarks.

DIEHARD contains 12 statistical tests that output a p-value,
which should be uniform on [0,1) if the input file contains truly
independent random bits. A p-value of 1 or 0 means the input
sequence has failed the test. After validating the remaining CA
RNG configuraton with DIEHARD we continue by running
the NIST Suite. This evaluation suite has been developed by
the Random Number Generation Technical Working Group
(RNG-TWG) between 1997 and 2010 as a benchmark for
RNGs and PRNGs used in cryptographic applications. NIST
contains 15 tests and, similar to DIEHARD, outputs a p-value
that determines if the input sequence has passed or failed the
test.

Finally, we evaluate the remaining configurations on
TestU01 [24], a benchmark consisting of four sub-tests. We
remove from our initial set of CA RNG configuration those
that have failed one of the randomness benchmarks, and eval-
uate the remaining configurations for FPGA implementation
efficiency. As target FPGA architectures, we select Xilinx
Spartan-3 and Virtex-6. Spartan-3 is selected for direct com-
parison to previous work on FPGA random number generation
in [25], while Virtex-6 is a more modern architecture.

B. Results

The initial short cycle evaluation results in the elimina-
tion of all configurations with null site spacing, therefore
leaving only 15 configurations for further analysis. The ENT
evaluation does not further eliminate any of the remaining
configurations, as all exhibit good performance on the ENT
banchmarks. The NIST benchmark passes on all remaining
configurations. DIEHARD fails on all configurations with time
spacing smaller than 2, therefore only 10 out of the initial 30
configurations are selected for evaluation with TestU01. Of
these, all except S1T3R4W50 pass the randomness test.

We also analyzed the inter-stream correlation of the winning
configurations, which is the correlation between streams gen-
erated with the same configuration but with different seeds.
Ideally, output streams from different seeds are completely
uncorrelated. The correlation evaluations were performed be-
tween two pairs of seeds, consisting of the binary represen-
tation of decimal values 0 and 1, and the repeating patterns
of 0xA and 0x5 respectively. The calculated correlation is a
number between -1 and 1, ideally 0. The correlation between
the streams generated by the seeds are presented in Table I. All
configurations with the same rule change interval performed
identically and were therefore compressed in the same table
entry.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 419



TABLE II: FPGA Implementation

Configuration Spartan-3 LUT/FF Spartan-3 Fmax Virtex-6 LUT/FF Virtex-6 Fmax

S1T2R2W50 358/380 177 237/227 641
S1T2R5W50 358/380 177 241/231 641

[25] 307/202 181 - -

Finally, we synthesized the circuit for the target FPGA
architecture of Xilinx Spartan-3 and Virtex-6. Table II gives
an overview of the best and worst implementation results
of the evaluated configurations, set against implementation
results from previous work in Thomas et al. [25]. From
previous work we selected the smallest implementation which
passed the DIEHARD and Crush benchmarks, since Crush is
a part of TestU01. For all remaining CA configurations, the
theoretical maximum frequency is calculated at 600 MHz, and
estimated area is similar. It must be noted that, while Spartan-
3 results are comparable, our work is optimized for Virtex-6
and therefore Spartan-3 performance may suffer.

VI. CONCLUSION AND FUTURE WORK

We have presented a pseudo-random number generator con-
sisting of a one-dimensional cellular automaton and a feedback
loop which monitors the CA outputs and modifies the CA
rules at set time intervals in order to improve the randomness
properties of the RNG. The generator was designed with
hardware efficiency in mind, and the resulting structure is
capable of passing all the selected randomness benchmarks,
while also occupying very little area when implemented in a
modern FPGA and is capable of operating at a high frequency
of over 600 MHz.

Future work will focus on the continued analysis of the
randomness properties of the proposed CA RNG architecture,
and on comparisons to other methods of random number
generation, with regard to both quality of output stream and
hardware implementation efficiency. In this work we have
explored a small number of the possible configurations of the
CA RNG architecture, and future work will also concentrate
on expanding the analysis to a larger number of configurations.

ACKNOWLEDGMENT

Part of this work was carried out with funding and sup-
port from POSDRU/159/1.5/S/132397 ExcelDoc postdoctoral
program.

REFERENCES

[1] S. Srinivasan, S. Mathew, R. Ramanarayanan, F. Sheikh, M. Anders,
H. Kaul, V. Erraguntla, R. Krishnamurthy, and G. Taylor, “2.4 ghz 7mw
all-digital pvt-variation tolerant true random number generator in 45nm
cmos,” in VLSI Circuits (VLSIC), 2010 IEEE Symposium on. IEEE,
2010, pp. 203–204.

[2] S. W. Golomb, L. R. Welch, R. M. Goldstein, and A. W. Hales, Shift
register sequences. Aegean Park Press Laguna Hills, CA, 1982, vol. 78.

[3] E. Dubrova, “A list of maximum period nlfsrs.” IACR Cryptology ePrint
Archive, vol. 2012, p. 166, 2012.

[4] R. Gottfert and B. M. Gammel, “On the frame length of achterbahn-
128/80,” in Information Theory for Wireless Networks, 2007 IEEE
Information Theory Workshop on. IEEE, 2007, pp. 1–5.

[5] B. Gammel, R. Göttfert, and O. Kniffler, “Achterbahn-128/80: Design
and analysis,” in ECRYPT Network of Excellence-SASC Workshop
Record, 2007, pp. 152–165.

[6] J. Conway, “The game of life,” Scientific American, vol. 223, no. 4, p. 4,
1970.

[7] P. Rendell, “A universal turing machine in conway’s game of life,” in
High Performance Computing and Simulation (HPCS), 2011 Interna-
tional Conference on. IEEE, 2011, pp. 764–772.

[8] S. Wolfram, “Statistical mechanics of cellular automata,” Reviews of
modern physics, vol. 55, no. 3, p. 601, 1983.

[9] ——, “Cryptography with cellular automata,” in Advances in Cryptology
CRYPTO85 Proceedings. Springer, 1986, pp. 429–432.

[10] ——, “Random sequence generation by cellular automata,” Advances in
applied mathematics, vol. 7, no. 2, pp. 123–169, 1986.

[11] D. De la Guia-Martinez and A. Fuster-Sabater, “Cryptographic design
based on cellular automata,” in Information Theory. 1997. Proceedings.,
1997 IEEE International Symposium on. IEEE, 1997, p. 180.

[12] I. Kokolakis, I. Andreadis, and P. Tsalides, “Comparison between
cellular automata and linear feedback shift registers based pseudo-
random number generators,” Microprocessors and Microsystems, vol. 20,
no. 10, pp. 643–658, 1997.

[13] M. Matsumoto, “Simple cellular automata as pseudorandom m-sequence
generators for built-in self-test,” ACM Transactions on Modeling and
Computer Simulation (TOMACS), vol. 8, no. 1, pp. 31–42, 1998.

[14] M. Tomassini, M. Sipper, and M. Perrenoud, “On the generation of
high-quality random numbers by two-dimensional cellular automata,”
Computers, IEEE Transactions on, vol. 49, no. 10, pp. 1146–1151, 2000.

[15] P. D. Hortensius, R. D. McLeod, and H. C. Card, “Parallel random
number generation for vlsi systems using cellular automata,” Computers,
IEEE Transactions on, vol. 38, no. 10, pp. 1466–1473, 1989.

[16] M. Tomassini, M. Sipper, M. Zolla, and M. Perrenoud, “Generating
high-quality random numbers in parallel by cellular automata,” Future
Generation Computer Systems, vol. 16, no. 2, pp. 291–305, 1999.

[17] S.-U. Guan and S. Zhang, “Pseudorandom number generation based on
controllable cellular automata,” Future Generation Computer Systems,
vol. 20, no. 4, pp. 627–641, 2004.

[18] D. H. Hoe, J. M. Comer, J. C. Cerda, C. D. Martinez, and M. V.
Shirvaikar, “Cellular automata-based parallel random number generators
using fpgas,” International Journal of Reconfigurable Computing, vol.
2012, p. 4, 2012.

[19] G. Stefan, “Looking for the lost noise,” in Semiconductor Conference,
1998. CAS’98 Proceedings. 1998 International, vol. 2. IEEE, 1998,
pp. 579–582.

[20] M. Sipper, Evolution of parallel cellular machines. Springer Heidel-
berg, 1997, vol. 4.

[21] J. Walker. (1998) Ent randomness test. [Online]. Available:
http://www.fourmilab.ch/random/

[22] G. Marsaglia and W. W. Tsang, “Some difficult-to-pass tests of random-
ness,” Journal of Statistical Software, vol. 7, no. 3, pp. 1–9, 2002.

[23] S. Chari, C. Jutla, J. R. Rao, and P. Rohatgi, “A cautionary note regarding
evaluation of aes candidates on smart-cards,” in Second Advanced
Encryption Standard Candidate Conference. Citeseer, 1999, pp. 133–
147.

[24] P. L’Ecuyer and R. Simard, “Testu01: A c library for empirical testing
of random number generators,” ACM Transactions on Mathematical
Software (TOMS), vol. 33, no. 4, p. 22, 2007.

[25] D. B. Thomas and W. Luk, “High quality uniform random number gener-
ation through lut optimised linear recurrences,” in Field-Programmable
Technology, 2005. Proceedings. 2005 IEEE International Conference on.
IEEE, 2005, pp. 61–68.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 420




