
 

 

  
Abstract— Scheduling of contacts between space vehicles (SVs) 

and ground stations is of extreme significance since it is essential for 
data transmission to and from satellites, vehicle maintenance, and 
orbit tracking and maintenance. We looked at the problem of 
scheduling contacts between SVs and the U.S. Air Force’s Satellite 
Control Network (SCN). To address the scheduling problem, our 
work combines case-based reasoning, rule based systems, and 
generate-and-test techniques, all adopted from artificial intelligence. 
Our system creates a preliminary, daily SCN schedule with between 
approximately 500 to 1500 contact requests. The goal is to create a 
schedule with as few conflicting contact requests as possible, which 
is then finalized by expert schedule planners. We evaluated our 
system looking at its performance using only one scheduling 
algorithm and also using a combination of the algorithms. The system 
was tested on real SCN schedules and it achieved an average of 
75.3% conflict-free over all SCN schedules tested. We also tested the 
system on schedules created by experts and which contained 
scheduling conflicts that the experts could not resolve; in these tests 
our system managed to resolve on average 44.4% of these conflicts, 
showing performance better than human expert schedulers. This 
paper addresses the software architecture of our system. 
 

Keywords—Artificial intelligence, case-based reasoning, 
generate-and-test, rule-based systems, scheduling.  

I. INTRODUCTION 
UR work looked at the problem of scheduling contacts 
between space vehicles (SVs) and the U.S. Air Force’s 

Satellite Control Network (SCN). Task scheduling of the SCN 
is of extreme significance to the Air Force since it is essential 
for data transmission from and to satellites, vehicle 
maintenance, and orbit tracking and maintenance.  Mission 
planners plan contacts between their SVs and SCN ground 
stations. 

Complexity arises from the fact that some satellites require 
equipment or capabilities that are not available at all ground 
stations.  So, when scheduling, one must keep track of the 
availability of the required support equipment. Additionally, 
set-up times to configure the equipment must be considered as 
part of the time required to provide the support.  Finally, 
ground stations themselves require periodic maintenance or 
emergency repairs.  
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Currently support requirements are expressed and submitted 
to the scheduling system as Program Action Plans (PAPs).  
PAPs may be used to specify time windows, support criteria, 
late starts or early stops, or support preferences such as a 
required antenna side or unacceptable equipment.  PAPs are 
written in a simplified and ad hoc language.   

The challenge of scheduling is to create a schedule that 
satisfies the needs of the users while not violating any of the 
constraints inherent in the SCN.  A good schedule must 
achieve as many of the following objectives as possible: 

• Optimize network utilization; 
• Maximize the number of satisfied requests; 
• Satisfy all high-priority requests; and 
• Ensure that no SV is denied too many consecutive 
requests, where “too many” is program dependent. 

Human expert schedulers use a number of heuristics to 
produce good, flexible schedules.  Schedules constructed using 
these principles tend to be easier to modify when real-time 
changes are required.  

In addition to the heuristics, the schedule has to adhere to 
many constraints and priorities. Constraints may also be 
flexible and defeasible.  For example, high-altitude satellites 
are more flexible in their scheduling requirements, and 
turnaround or maintenance down times are padded and can be 
negotiated down to achieve a workable schedule. 

Scheduling is done for different time frames with the 
shortest one being the 24 hour schedule. This schedule must be 
conflict-free and is produced manually in a series of steps, 
described in detail in [1]. 

The real-time schedule revisions are driven by events that 
lead to changes in real-time: ground station outages and 
satellite emergencies.  When the support schedule is changed, 
notification is transmitted primarily by phone calls or face-to-
face communications. 

SCN Scheduling needs increased automation to deal with 
the following problems: 

• Scheduling SCN assets is a difficult and complex task. 
• Priorities are not clearly stated and not uniform from 
station to station or satellite to satellite.  
• The current scheduling process is manpower intensive. 
• The input of scheduling data and the manipulation of 
the schedule is manual, and the process of schedule 
deconfliction requires significant amounts of effort.   
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To address the problem of deconfliction we developed the 
ICARUS system (Integration of CAse-based Reasoning and 
Utility theory for Satellite schedule resolution).  The basic 
technology of ICARUS is case-based reasoning (CBR), i.e. 
acting intelligently (in this case, performing task deconfliction) 
using previously successful experiences. CBR is well suited to 
the deconfliction task since expert schedulers often use the 
same strategies used in previous deconfliction sessions. 

At the same time our research established that there are two 
more ways by which expert planners deconflict satellite 
contact schedules: First, there are some well-defined rules that 
experts use to deconflict schedules. These rules are simple and 
address simple conflicts, but they are also powerful in that they 
can address a large number of conflicts. 

Second, when experts do not know or cannot design a 
solution, they revert to “generate-and-test” problem solving. 
Basically, they try a number of deconfliction techniques 
hoping that one of them will work. Such problem solving may 
sound random, but in reality, the techniques used are few, 
focused, and are developed by decades of experience. These 
techniques offer an alternate way of solving difficult 
scheduling problems. 

ICARUS does not rely only on case-based reasoning to 
deconflict schedules. Our experience with domain experts 
showed that they combine problem solving techniques, and so 
does ICARUS. 

Given a requested schedule that may contain hundreds of 
conflicts, ICARUS will apply deconfliction rules acquired 
from experts, will try different changes to the schedule in a 
generate-and-test mode, and will also use case-based reasoning 
for deconfliction. ICARUS allows the user to turn on/off the 
three different deconfliction methodologies (CBR, rules, and 
generate-and-test), and to perform an analysis of the efficacy 
of each methodology. 

ICARUS was applied to real SCN schedules that had been 
requested by personnel responsible for particular satellites, and 
which had hundreds of conflicts. We also applied ICARUS on 
schedules that had been deconflicted manually by human 
experts, to see whether an automated system would improve 
on the performance of experts.   

II. RELATED RESEARCH 
The area of satellite scheduling can be broken into two 

major sub-areas. The area addressed in this research is that of 
space-ground communications, often called the satellite range 
scheduling problem. The other main area of research in 
satellite scheduling is that of scheduling tasks on the satellite 
itself, often called satellite mission planning. 

  Many different approaches have been investigated in the 
area of satellite range scheduling. A relaxed version of the 
satellite range scheduling problem occurs in the area of non-
commercial, primarily academic, satellite projects. As 
described by Schmidt and Schilling [2], under these 
conditions, ground stations are generally more flexible, contact 
windows can be shifted to other participating ground stations, 

time limits are not as strict as those in paid contact situations, 
and communications are not restricted to a single time 
window. Schmidt and Schilling describe two approaches to 
optimize schedules under these conditions: branch and bound, 
and hill climbing. Their results show that in a test with stations 
located in four countries, all requests were satisfied after an 
initial set of requests showed 42 conflicts, and in general, 
requests were satisfied in an equitable manner. It is not clear, 
however, how the two approaches were combined, if at all, in 
producing these results. 

Marinelli, et.al. [3] addressed the satellite range scheduling 
problem using a Lagrangian heuristic. They framed the 
problem as a multiprocessor task scheduling problem, an 
approach originating in the operating systems domain. Their 
approach allowed a relaxation of constraints, which resulted in 
near optimal performance on large scale test problems. 

Yang and Xing [4] combine learnable ant colonies with a 
knowledge model to improve scheduling performance for the 
satellite range scheduling problem. The ant colony searches 
the feasible domain while the knowledge model looks at 
previous iterations and discovers information that can then be 
used by subsequent iterations of the ant colony. They tested 
their approach on 40 generated instances and found that tasks 
with high priority were consistently scheduled first, while 
lower priority tasks may have had limits placed on their time 
windows. Most tasks were scheduled, and schedules produced 
a high utilization rate and a balanced load. 

Howe, et.al. [5] discuss the issues associated with satellite 
range scheduling and introduce an initial software framework 
as a basis for approaching the problem. Some of the issues 
they discuss are that automated scheduling will never be able 
to completely generate schedules, and that human intervention 
will always be required, because the problem is over-
constrained, and information can become available to human 
experts that will not be available to an automated system. 
Furthermore, the nature of the problem is such that an 
objective optimization function may not be realizable. It is 
difficult to assign a meaningful weighting and not all the 
information needed to resolve a conflict is available to an 
algorithm. Their initial approach involves framing the problem 
as a job shop scheduling problem and using slack-based and 
texture-based heuristics coupled with different search 
algorithms. They use a problem generator to generate realistic, 
though not real, problems. They also use a web-based interface 
so that humans using the system at different locations have 
access to the same system. 

Barbulescu, et.al. [6] build on previous work on the satellite 
range scheduling problem and prove several interesting results. 
First, they show that the problem is NP-complete. They also 
show that the results from a reduced problem, that of single 
resource scheduling, do not generalize into the multi-resource 
problem. Simple heuristic approaches perform well on “easier” 
problems, circa 1992, but as the number of requests has grown 
larger, these approaches do not scale up. Finally, they show 
that a genetic algorithm approach yields the best results on 
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larger, more complex problems, which are more representative 
of present-day communications traffic. 

As recently as the early 2000’s, a system called ASTRO was 
in use as the satellite range scheduling system for SCN 
resources. ASTRO was a set of tools for compiling, storing, 
displaying, and manipulating SCN resource requests and the 
resulting schedules.  ASTRO was a DOS-based system that 
allowed the human scheduler to enter schedule requests and 
manipulate this data to produce a network schedule, though it 
did not automate the decision process.  ASTRO featured a 
large-screen monitor to display the schedule and a sonic pen 
used to manipulate the schedule [7]. 

Case based reasoning has not been investigated much in the 
area of satellite range scheduling, but it has been used in other 
planning and scheduling areas. Related to ICARUS, described 
in this research, are case based planning systems, such as 
CaPER [8], a CBR system that uses high performance 
computing techniques for fast retrieval.  CaPER also attempts 
to merge plans and to resolve harmful interactions between 
them.  ForMAT uses CBR to retrieve old plans, represents 
temporal relationships, and assists the user for revisions and 
re-planning [9].  CABINS used CBR to schedule job shop 
activities.  CABINS represented cases based on the temporal 
constraints they satisfied and the goals they achieved, and had 
a constraint-based scheduling component to iteratively repair 
schedules retrieved by CBR [10].  

This paper focuses on the software architecture of ICARUS. 
A more complete description of the decision methodology 
contained in the software can be found in [11]. 

III. ICARUS OPERATION AND ARCHITECTURE 

A. Overview 
ICARUS takes as input a conflicted schedule and produces 

a schedule that has been deconflicted as much as possible. One 
constraint on the schedule input was that our system had to 
read and parse the schedule format produced by the tool being 
used, ASTRO. ICARUS was then required to output the 
deconflicted schedule in the same format. The input/output 
language is not effective for making scheduling decisions, 
however, so part of the process of parsing the input files was to 
generate data in a normalized database format. 

Once a conflicted schedule and any necessary additional 
information was loaded into ICARUS, it iterates over its three 
deconfliction engines: rule-based, case-based, and generate-
and-test.  The user can control the number of iterations and 
which deconfliction engines can be used.  The only constraint 
is that the user cannot change the sequence in which the 
engines are applied to the schedule. 

ICARUS allows the user to view the original and the 
deconflicted schedules. The system also generates appropriate 
schedule statistics, such as total number of tasks, conflicts, and 
visibilities, and complexity of conflicts (i.e. the number of 
tasks conflicting with another task.)  

Each of these processes is discussed below, and the overall 
architecture is shown in Figure 1. 

 

 
Figure 1: ICARUS Architecture Overview 

 

B. Input/Output – Parser and Inverse Parser 
The scheduling assistant tool used by the Air Force SCN 

was called ASTRO. The underlying language associated with 
ASTRO was ad hoc, and not structured in a way that it could 
be operated on programmatically. The first step, then, in 
building the system was to parse this language into meaningful 
and structured data. An example of two entries in the DEFT 
format used by ASTRO are: 

 
QK350LION-BSTRNGTCS 0312201500003003080000060000 N N 
N        008008       12202C008 STA TRNG, 30 MIN 
BLK, W=1800-2100Z, NOT W/OTHER ANT D/T..                  
S008 ARTS AR33                                                                  
L 1800-2100 :30/:30/:30                                                         
QH905HULA-BSPMI HTS 0312163000040003081900060000 N N 
N        013013 8     12166C013 PROTECTED PMI, -
00/+96 HRS OF MON/1700Z, PREF NO SHIFT CROSS OF 
17,01,09Z. S013 ARTS AR46                                                                  
L 4/4/:30                                                                       
N NT     CROSS OVER OK..KR  
  

The DEFT files describe scheduling requests, while ENV 
files describe ground stations and available equipment and 
resources on those stations, covering the time period for the 
requests in the associated DEFT files. Both of these files are 
parsed into an object format which represents a normalized 
structure for SQL database storage. As an example, task 
requests have the structure shown in Figure 2. 

 

 
Figure 2: Parsed Task Structure 
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After completion of its deconfliction process, ICARUS 
performs the inverse parsing of its internal data representation 
structures to produce a file readable by the ASTRO program. 

In addition to file I/O, ICARUS allows user control of 
certain operational parameters. A user can specify which of the 
three deconfliction engines, in combination or alone, can be 
used during the session and how many iterations the 
deconfliction process is allowed to make before stopping. 

 

C. Database 
ICARUS uses the parsed tasks and environments to create a 

relational database. The database management system used is 
MySQL. ICARUS can create the database structure if needed, 
and populates the database with the task requests and 
environment data of the parsed DEFT and ENV files. 

Figure 3 shows the overall layout of the database structure 
used by ICARUS in performing its deconfliction. While 
individual relation and field names in the image are not 
readable, the overall structure of the relations is evident in the 
diagram. 

 

 
Figure 3: ICARUS Database Structure 

 

D. Deconfliction Engines 
1) Case-Based Reasoner 

In ICARUS a case contains a description of a conflicted task 
and the knowledge inside the case stores specific information 

about how the conflict was resolved.  A case base is created by 
using two schedules for the same set of tasks.  The first 
schedule (the "before" schedule) is the not yet deconflicted set 
of requests by the Satellite Operations Centers.  The second 
schedule (the "after" schedule) is the deconflicted set of the 
same set of requests. Cases used in the ICARUS case base are 
those where deconfliction was performed by expert schedulers.  
ICARUS identifies the same task in the before and after 
schedules, making sure that the task had conflicts in the before 
schedule and has no remaining conflicts in the after schedule.   

The case description is a description of the conflicted task.  
It is a descriptor of the context and specific details of the task, 
such as equipment it requires, its duration, its time constraints, 
and so on.  It is meant to help the case-based deconflictor 
identify similar, conflicted tasks.  The case description 
contains the information used in matching tasks, which are 
actual contacts between a satellite and a ground station. 

The solution part of the case consists of the ways in which 
the conflict was resolved.  This information is extracted by 
studying the task in the before and after schedules and 
identifying how the conflicted task was changed in the after 
schedule.  The ICARUS case-based reasoner identifies the 
following changes to a task: 1.) change station; 2.) change 
station side; 3.) change start time; 4.) change turn-around-
time; 5.) change duration; and 6.)  change data system. 

Given a case base, ICARUS uses it to resolve conflicts.  To 
do so it selects the best case from memory by a weighted 
matching of all features of a conflicted task against all cases, 
followed by ranking of the cases by the matching weights.  
Each feature in ICARUS is given a weight between 0 (not used 
in matching) and 1. Features that are symbolic and single 
valued are matched one-to-one (binary match).  Features that 
are numeric and single valued are matched by the value 
weighted by the inverse of the difference between the two 
values.  Multivalued features are matched as the intersection of 
matching values (such multivalued attributes are, for example, 
the equipment list or the list of preferred stations).  The 
matching value is weighted by the feature weight and all 
weighted values are summed to generate the final matching 
value for a case. 

After the best case is selected, ICARUS attempts to apply 
the deconfliction solutions found in the case subject to the 
constraints defined in the task. If a case has more than one 
potential deconfliction action, ICARUS attempts to perform 
each one of the actions until it either deconflicts the task, or all 
steps fail. 

Figure 4 shows the overall architecture of the case-based 
reasoning portion of the ICARUS system. 

 
2) Rule-Based Deconfliction 

Rule-based deconfliction is based on the way that expert 
schedulers initiate deconfliction of schedules.  Schedulers 
attempt to first "slide" a task on the same station side, trying to 
find an opening wide enough to accommodate the task, and 
where equipment is available and the task is within its 
visibility window. 
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Figure 4: Case Based Reasoner Architecture Overview 

 
ICARUS does the same thing.  Without changing anything 

other than the start time of a task, it slides a task obeying the 
time constraints and making sure the task is visible and the 
necessary equipment is available.  If  the start time is fixed and 
the task start time has been defined incorrectly, the rule-based 
deconflictor will move the task to the correct time. The rule-
based deconflictor also makes sure the open time it finds will 
accommodate the defined turn-around-time.  

This process is described more formally using set theory 
constructs. Given are a set of antenna sites {Si}, and a set of 
space vehicles {Vj}. In general, a vehicle Vj is visible to a site 
Si for various time intervals during the day. There are a set of 
assigned tasks for the sites. This implementation of the rule-
based portion of ICARUS attempts to move the time intervals 
to reduce the number of conflicts. First it reads the tasks for a 
given site, and for each task, stores the time interval, 
identification number, and task type. Let this set of time 
intervals be 

 
T = {t1, t2, …, tn}                                                             (1) 
 
These intervals are sorted according to starting time, then 

any set of sequential overlapping intervals are combined into a 
single interval. Then the resulting set 

 
U = {s1, s2, …, sn}                                                           (2) 
 
is unavailable time space. Initially no task could be moved 

to this space to eliminate a conflict. The available space is the 
complement 

 
A = UC.                                                                             (3) 
 
For each task P to be shifted to the available space A, there 

is an associated visibility set, Vp, which is a set of time 
intervals, so the available space is refined as 

 
Ap = A∩Vp                                                                       (4) 
 
Calling the ith overlapping set Oi, for each interval i in Oi, 

we examine the available space Ap, and find the translation 
seconds to shift I to the closest available space. If this is 
successful, we subtract the translated interval IT from A to get 
a new available space. We continue this until we reach the last 
element of the overlapping set Oi and can either report success 
or failure. 

 
3) Generate-And-Test Deconfliction 

We noticed that there was a finite set of actions schedulers 
(and ICARUS) can take to deconflict a task: change station, 
change side, change service start time, change turn-around-
time, and change task duration.  Consequently, we added one 
more deconfliction engine to ICARUS, one that cycles through 
all possible deconfliction actions until it finds one that resolves 
the conflict.  In other words, this engine generates a possible 
deconfliction action and tests it to see if it will work.  This is 
the "generate-and-test" deconfliction engine.  

The major difference between case-based and generate-and-
test deconfliction is that the former elects to perform only the 
best deconfliction actions based on its experience, while the 
latter will try all steps.   

Each change is tested against the same constraints as the 
changes performed by the case-based deconfliction engine.  
The sequence of changes attempted in this approach was 
established in collaboration with experts, and represents an 
increasing disturbance of the task.  So, ICARUS will first 
attempt the least intrusive changes, the ones that leave the 
scheduling requests as unchanged as possible, and will 
increasingly disturb these requests (within constraints) until a 
solution is found. 

 

E. Viewer 
As deconfliction progresses, ICARUS displays messages 

and progress bars on the screen to keep the user informed. The 
user may also view the schedule before and after deconfliction 
using our schedule viewer. An example of this is shown in 
Figure 5. 

The x-axis is time, here spanning four and a half days.  The 
span depends on the input schedule. The y-axis consists of the 
satellite stations, read in from the ENV file.  The color bars 
represent the satellite contact tasks (a different color for a 
different contact), red bars represent conflicts in the schedule, 
and green bars represent station maintenance tasks. 
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Figure 5: Graphical View of Conflicted Schedule 

IV. RESULTS 
We evaluated our system on actual SCN schedules and 

some of the results are shown on Table 1.  The schedules 
started with a number of tasks and conflicts due to conflicting 
contact requests. ICARUS used all its deconfliction methods 
sequentially (rule based, CBR, and generate-and-test), and the 
results of each deconfliction step are listed in the table. For 
example, the first schedule shown in Table 1 started with 379 
conflicts and after applying the rule based deconflictor there 
were 301 remaining conflicts, after applying CBR there were 
300 conflicts, which were then lowered to 244 by generate-
and-test. The system iterated three times, and stopped after the 
conflicts did not change after an iteration cycle. 

We tested our system on SCN provided schedules, and after 
ICARUS the average schedule was 75.3% clear of conflicts. 
We also tested ICARUS on schedules created by experts and 
which contained scheduling conflicts that the experts could not 
resolve; in these tests our system managed to resolve on 
average 44.4% of these conflicts, showing performance better 
than human expert schedulers. 

 
Table 1: Sample Deconfliction Results 

 
Tasks 

 
Initial 

Conflicts 

 
Iterations 

(Orig→RuleBased→CBR→G&T) 

 
Final  

Conflicts 
562 379 379→301→300→244 

244→241→241→239 
239→239→239→239 

 
239 

717 69 69→63→63→23 
23→22→22→22 
22→22→22→22 

 
22 

535 241 241→138→135→116 
116→116→116→116 

116 

587 300 300→202→199→163 
163→161→161→161 
161→161→161→161 

 
161 

1505 617 617→458→447→352 
352→350→350→348 
348→348→348→348 

 
348 

V. CONCLUSIONS AND FUTURE WORK 
Our work addressed an important operational need of 

satellite control networks: how to resolve conflicting requests 
for access to the ground station by space vehicles. This 
problem is different from traditional scheduling or planning 
ones, since it starts with an existing schedule which 
corresponds to scheduling requests. These requests are often 
conflicting, and require correction. 

There are two potential extensions to ICARUS, both 
improving its deconfliction performance. ICARUS could 
implement hand-offs between ground stations. In other words, 
a contact task could be shared between two stations, if it could 
not be fully satisfied at one station.  A large number of 
conflicts can be resolved if a long contact request can be 
broken into smaller contacts that are distributed over a set of 
stations.  Also, certain resources can be shared by multiple 
tasks. Allowing sharing of resources and equipment will 
improve deconfliction performance. 

There will almost always be conflicts in every schedule that 
cannot be resolved because of hard constraints. These 
scheduling requests are denied by human users, something our 
system is not allowed to do. Consequently, regardless of 
improvements to our system, it will never generate a 100% 
conflict-free schedule. 
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