

Abstract— Scheduling of contacts between space vehicles (SVs)

and ground stations is of extreme significance since it is essential for
data transmission to and from satellites, vehicle maintenance, and
orbit tracking and maintenance. We looked at the problem of
scheduling contacts between SVs and the U.S. Air Force’s Satellite
Control Network (SCN). To address the scheduling problem, our
work combines case-based reasoning, rule based systems, and
generate-and-test techniques, all adopted from artificial intelligence.
Our system creates a preliminary, daily SCN schedule with between
approximately 500 to 1500 contact requests. The goal is to create a
schedule with as few conflicting contact requests as possible, which
is then finalized by expert schedule planners. We evaluated our
system looking at its performance using only one scheduling
algorithm and also using a combination of the algorithms. The system
was tested on real SCN schedules and it achieved an average of
75.3% conflict-free over all SCN schedules tested. We also tested the
system on schedules created by experts and which contained
scheduling conflicts that the experts could not resolve; in these tests
our system managed to resolve on average 44.4% of these conflicts,
showing performance better than human expert schedulers. This
paper addresses the software architecture of our system.

Keywords—Artificial intelligence, case-based reasoning,
generate-and-test, rule-based systems, scheduling.

I. INTRODUCTION
UR work looked at the problem of scheduling contacts
between space vehicles (SVs) and the U.S. Air Force’s

Satellite Control Network (SCN). Task scheduling of the SCN
is of extreme significance to the Air Force since it is essential
for data transmission from and to satellites, vehicle
maintenance, and orbit tracking and maintenance. Mission
planners plan contacts between their SVs and SCN ground
stations.

Complexity arises from the fact that some satellites require
equipment or capabilities that are not available at all ground
stations. So, when scheduling, one must keep track of the
availability of the required support equipment. Additionally,
set-up times to configure the equipment must be considered as
part of the time required to provide the support. Finally,
ground stations themselves require periodic maintenance or
emergency repairs.

This work was supported in part by US Air Force Contract # F29601-98-

C-0042.

Currently support requirements are expressed and submitted
to the scheduling system as Program Action Plans (PAPs).
PAPs may be used to specify time windows, support criteria,
late starts or early stops, or support preferences such as a
required antenna side or unacceptable equipment. PAPs are
written in a simplified and ad hoc language.

The challenge of scheduling is to create a schedule that
satisfies the needs of the users while not violating any of the
constraints inherent in the SCN. A good schedule must
achieve as many of the following objectives as possible:

• Optimize network utilization;
• Maximize the number of satisfied requests;
• Satisfy all high-priority requests; and
• Ensure that no SV is denied too many consecutive
requests, where “too many” is program dependent.

Human expert schedulers use a number of heuristics to
produce good, flexible schedules. Schedules constructed using
these principles tend to be easier to modify when real-time
changes are required.

In addition to the heuristics, the schedule has to adhere to
many constraints and priorities. Constraints may also be
flexible and defeasible. For example, high-altitude satellites
are more flexible in their scheduling requirements, and
turnaround or maintenance down times are padded and can be
negotiated down to achieve a workable schedule.

Scheduling is done for different time frames with the
shortest one being the 24 hour schedule. This schedule must be
conflict-free and is produced manually in a series of steps,
described in detail in [1].

The real-time schedule revisions are driven by events that
lead to changes in real-time: ground station outages and
satellite emergencies. When the support schedule is changed,
notification is transmitted primarily by phone calls or face-to-
face communications.

SCN Scheduling needs increased automation to deal with
the following problems:

• Scheduling SCN assets is a difficult and complex task.
• Priorities are not clearly stated and not uniform from
station to station or satellite to satellite.
• The current scheduling process is manpower intensive.
• The input of scheduling data and the manipulation of
the schedule is manual, and the process of schedule
deconfliction requires significant amounts of effort.

Software Architecture for a System Combining
Artificial Intelligence Approaches for Ground

Station Scheduling
Michele M. Van Dyne, Costas Tsatsoulis

O

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 71

To address the problem of deconfliction we developed the
ICARUS system (Integration of CAse-based Reasoning and
Utility theory for Satellite schedule resolution). The basic
technology of ICARUS is case-based reasoning (CBR), i.e.
acting intelligently (in this case, performing task deconfliction)
using previously successful experiences. CBR is well suited to
the deconfliction task since expert schedulers often use the
same strategies used in previous deconfliction sessions.

At the same time our research established that there are two
more ways by which expert planners deconflict satellite
contact schedules: First, there are some well-defined rules that
experts use to deconflict schedules. These rules are simple and
address simple conflicts, but they are also powerful in that they
can address a large number of conflicts.

Second, when experts do not know or cannot design a
solution, they revert to “generate-and-test” problem solving.
Basically, they try a number of deconfliction techniques
hoping that one of them will work. Such problem solving may
sound random, but in reality, the techniques used are few,
focused, and are developed by decades of experience. These
techniques offer an alternate way of solving difficult
scheduling problems.

ICARUS does not rely only on case-based reasoning to
deconflict schedules. Our experience with domain experts
showed that they combine problem solving techniques, and so
does ICARUS.

Given a requested schedule that may contain hundreds of
conflicts, ICARUS will apply deconfliction rules acquired
from experts, will try different changes to the schedule in a
generate-and-test mode, and will also use case-based reasoning
for deconfliction. ICARUS allows the user to turn on/off the
three different deconfliction methodologies (CBR, rules, and
generate-and-test), and to perform an analysis of the efficacy
of each methodology.

ICARUS was applied to real SCN schedules that had been
requested by personnel responsible for particular satellites, and
which had hundreds of conflicts. We also applied ICARUS on
schedules that had been deconflicted manually by human
experts, to see whether an automated system would improve
on the performance of experts.

II. RELATED RESEARCH
The area of satellite scheduling can be broken into two

major sub-areas. The area addressed in this research is that of
space-ground communications, often called the satellite range
scheduling problem. The other main area of research in
satellite scheduling is that of scheduling tasks on the satellite
itself, often called satellite mission planning.

 Many different approaches have been investigated in the
area of satellite range scheduling. A relaxed version of the
satellite range scheduling problem occurs in the area of non-
commercial, primarily academic, satellite projects. As
described by Schmidt and Schilling [2], under these
conditions, ground stations are generally more flexible, contact
windows can be shifted to other participating ground stations,

time limits are not as strict as those in paid contact situations,
and communications are not restricted to a single time
window. Schmidt and Schilling describe two approaches to
optimize schedules under these conditions: branch and bound,
and hill climbing. Their results show that in a test with stations
located in four countries, all requests were satisfied after an
initial set of requests showed 42 conflicts, and in general,
requests were satisfied in an equitable manner. It is not clear,
however, how the two approaches were combined, if at all, in
producing these results.

Marinelli, et.al. [3] addressed the satellite range scheduling
problem using a Lagrangian heuristic. They framed the
problem as a multiprocessor task scheduling problem, an
approach originating in the operating systems domain. Their
approach allowed a relaxation of constraints, which resulted in
near optimal performance on large scale test problems.

Yang and Xing [4] combine learnable ant colonies with a
knowledge model to improve scheduling performance for the
satellite range scheduling problem. The ant colony searches
the feasible domain while the knowledge model looks at
previous iterations and discovers information that can then be
used by subsequent iterations of the ant colony. They tested
their approach on 40 generated instances and found that tasks
with high priority were consistently scheduled first, while
lower priority tasks may have had limits placed on their time
windows. Most tasks were scheduled, and schedules produced
a high utilization rate and a balanced load.

Howe, et.al. [5] discuss the issues associated with satellite
range scheduling and introduce an initial software framework
as a basis for approaching the problem. Some of the issues
they discuss are that automated scheduling will never be able
to completely generate schedules, and that human intervention
will always be required, because the problem is over-
constrained, and information can become available to human
experts that will not be available to an automated system.
Furthermore, the nature of the problem is such that an
objective optimization function may not be realizable. It is
difficult to assign a meaningful weighting and not all the
information needed to resolve a conflict is available to an
algorithm. Their initial approach involves framing the problem
as a job shop scheduling problem and using slack-based and
texture-based heuristics coupled with different search
algorithms. They use a problem generator to generate realistic,
though not real, problems. They also use a web-based interface
so that humans using the system at different locations have
access to the same system.

Barbulescu, et.al. [6] build on previous work on the satellite
range scheduling problem and prove several interesting results.
First, they show that the problem is NP-complete. They also
show that the results from a reduced problem, that of single
resource scheduling, do not generalize into the multi-resource
problem. Simple heuristic approaches perform well on “easier”
problems, circa 1992, but as the number of requests has grown
larger, these approaches do not scale up. Finally, they show
that a genetic algorithm approach yields the best results on

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 72

larger, more complex problems, which are more representative
of present-day communications traffic.

As recently as the early 2000’s, a system called ASTRO was
in use as the satellite range scheduling system for SCN
resources. ASTRO was a set of tools for compiling, storing,
displaying, and manipulating SCN resource requests and the
resulting schedules. ASTRO was a DOS-based system that
allowed the human scheduler to enter schedule requests and
manipulate this data to produce a network schedule, though it
did not automate the decision process. ASTRO featured a
large-screen monitor to display the schedule and a sonic pen
used to manipulate the schedule [7].

Case based reasoning has not been investigated much in the
area of satellite range scheduling, but it has been used in other
planning and scheduling areas. Related to ICARUS, described
in this research, are case based planning systems, such as
CaPER [8], a CBR system that uses high performance
computing techniques for fast retrieval. CaPER also attempts
to merge plans and to resolve harmful interactions between
them. ForMAT uses CBR to retrieve old plans, represents
temporal relationships, and assists the user for revisions and
re-planning [9]. CABINS used CBR to schedule job shop
activities. CABINS represented cases based on the temporal
constraints they satisfied and the goals they achieved, and had
a constraint-based scheduling component to iteratively repair
schedules retrieved by CBR [10].

This paper focuses on the software architecture of ICARUS.
A more complete description of the decision methodology
contained in the software can be found in [11].

III. ICARUS OPERATION AND ARCHITECTURE

A. Overview
ICARUS takes as input a conflicted schedule and produces

a schedule that has been deconflicted as much as possible. One
constraint on the schedule input was that our system had to
read and parse the schedule format produced by the tool being
used, ASTRO. ICARUS was then required to output the
deconflicted schedule in the same format. The input/output
language is not effective for making scheduling decisions,
however, so part of the process of parsing the input files was to
generate data in a normalized database format.

Once a conflicted schedule and any necessary additional
information was loaded into ICARUS, it iterates over its three
deconfliction engines: rule-based, case-based, and generate-
and-test. The user can control the number of iterations and
which deconfliction engines can be used. The only constraint
is that the user cannot change the sequence in which the
engines are applied to the schedule.

ICARUS allows the user to view the original and the
deconflicted schedules. The system also generates appropriate
schedule statistics, such as total number of tasks, conflicts, and
visibilities, and complexity of conflicts (i.e. the number of
tasks conflicting with another task.)

Each of these processes is discussed below, and the overall
architecture is shown in Figure 1.

Figure 1: ICARUS Architecture Overview

B. Input/Output – Parser and Inverse Parser
The scheduling assistant tool used by the Air Force SCN

was called ASTRO. The underlying language associated with
ASTRO was ad hoc, and not structured in a way that it could
be operated on programmatically. The first step, then, in
building the system was to parse this language into meaningful
and structured data. An example of two entries in the DEFT
format used by ASTRO are:

QK350LION-BSTRNGTCS 0312201500003003080000060000 N N
N 008008 12202C008 STA TRNG, 30 MIN
BLK, W=1800-2100Z, NOT W/OTHER ANT D/T..
S008 ARTS AR33
L 1800-2100 :30/:30/:30
QH905HULA-BSPMI HTS 0312163000040003081900060000 N N
N 013013 8 12166C013 PROTECTED PMI, -
00/+96 HRS OF MON/1700Z, PREF NO SHIFT CROSS OF
17,01,09Z. S013 ARTS AR46
L 4/4/:30
N NT CROSS OVER OK..KR

The DEFT files describe scheduling requests, while ENV
files describe ground stations and available equipment and
resources on those stations, covering the time period for the
requests in the associated DEFT files. Both of these files are
parsed into an object format which represents a normalized
structure for SQL database storage. As an example, task
requests have the structure shown in Figure 2.

Figure 2: Parsed Task Structure

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 73

After completion of its deconfliction process, ICARUS
performs the inverse parsing of its internal data representation
structures to produce a file readable by the ASTRO program.

In addition to file I/O, ICARUS allows user control of
certain operational parameters. A user can specify which of the
three deconfliction engines, in combination or alone, can be
used during the session and how many iterations the
deconfliction process is allowed to make before stopping.

C. Database
ICARUS uses the parsed tasks and environments to create a

relational database. The database management system used is
MySQL. ICARUS can create the database structure if needed,
and populates the database with the task requests and
environment data of the parsed DEFT and ENV files.

Figure 3 shows the overall layout of the database structure
used by ICARUS in performing its deconfliction. While
individual relation and field names in the image are not
readable, the overall structure of the relations is evident in the
diagram.

Figure 3: ICARUS Database Structure

D. Deconfliction Engines
1) Case-Based Reasoner

In ICARUS a case contains a description of a conflicted task
and the knowledge inside the case stores specific information

about how the conflict was resolved. A case base is created by
using two schedules for the same set of tasks. The first
schedule (the "before" schedule) is the not yet deconflicted set
of requests by the Satellite Operations Centers. The second
schedule (the "after" schedule) is the deconflicted set of the
same set of requests. Cases used in the ICARUS case base are
those where deconfliction was performed by expert schedulers.
ICARUS identifies the same task in the before and after
schedules, making sure that the task had conflicts in the before
schedule and has no remaining conflicts in the after schedule.

The case description is a description of the conflicted task.
It is a descriptor of the context and specific details of the task,
such as equipment it requires, its duration, its time constraints,
and so on. It is meant to help the case-based deconflictor
identify similar, conflicted tasks. The case description
contains the information used in matching tasks, which are
actual contacts between a satellite and a ground station.

The solution part of the case consists of the ways in which
the conflict was resolved. This information is extracted by
studying the task in the before and after schedules and
identifying how the conflicted task was changed in the after
schedule. The ICARUS case-based reasoner identifies the
following changes to a task: 1.) change station; 2.) change
station side; 3.) change start time; 4.) change turn-around-
time; 5.) change duration; and 6.) change data system.

Given a case base, ICARUS uses it to resolve conflicts. To
do so it selects the best case from memory by a weighted
matching of all features of a conflicted task against all cases,
followed by ranking of the cases by the matching weights.
Each feature in ICARUS is given a weight between 0 (not used
in matching) and 1. Features that are symbolic and single
valued are matched one-to-one (binary match). Features that
are numeric and single valued are matched by the value
weighted by the inverse of the difference between the two
values. Multivalued features are matched as the intersection of
matching values (such multivalued attributes are, for example,
the equipment list or the list of preferred stations). The
matching value is weighted by the feature weight and all
weighted values are summed to generate the final matching
value for a case.

After the best case is selected, ICARUS attempts to apply
the deconfliction solutions found in the case subject to the
constraints defined in the task. If a case has more than one
potential deconfliction action, ICARUS attempts to perform
each one of the actions until it either deconflicts the task, or all
steps fail.

Figure 4 shows the overall architecture of the case-based
reasoning portion of the ICARUS system.

2) Rule-Based Deconfliction

Rule-based deconfliction is based on the way that expert
schedulers initiate deconfliction of schedules. Schedulers
attempt to first "slide" a task on the same station side, trying to
find an opening wide enough to accommodate the task, and
where equipment is available and the task is within its
visibility window.

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 74

Figure 4: Case Based Reasoner Architecture Overview

ICARUS does the same thing. Without changing anything

other than the start time of a task, it slides a task obeying the
time constraints and making sure the task is visible and the
necessary equipment is available. If the start time is fixed and
the task start time has been defined incorrectly, the rule-based
deconflictor will move the task to the correct time. The rule-
based deconflictor also makes sure the open time it finds will
accommodate the defined turn-around-time.

This process is described more formally using set theory
constructs. Given are a set of antenna sites {Si}, and a set of
space vehicles {Vj}. In general, a vehicle Vj is visible to a site
Si for various time intervals during the day. There are a set of
assigned tasks for the sites. This implementation of the rule-
based portion of ICARUS attempts to move the time intervals
to reduce the number of conflicts. First it reads the tasks for a
given site, and for each task, stores the time interval,
identification number, and task type. Let this set of time
intervals be

T = {t1, t2, …, tn} (1)

These intervals are sorted according to starting time, then

any set of sequential overlapping intervals are combined into a
single interval. Then the resulting set

U = {s1, s2, …, sn} (2)

is unavailable time space. Initially no task could be moved

to this space to eliminate a conflict. The available space is the
complement

A = UC. (3)

For each task P to be shifted to the available space A, there

is an associated visibility set, Vp, which is a set of time
intervals, so the available space is refined as

Ap = A∩Vp (4)

Calling the ith overlapping set Oi, for each interval i in Oi,

we examine the available space Ap, and find the translation
seconds to shift I to the closest available space. If this is
successful, we subtract the translated interval IT from A to get
a new available space. We continue this until we reach the last
element of the overlapping set Oi and can either report success
or failure.

3) Generate-And-Test Deconfliction

We noticed that there was a finite set of actions schedulers
(and ICARUS) can take to deconflict a task: change station,
change side, change service start time, change turn-around-
time, and change task duration. Consequently, we added one
more deconfliction engine to ICARUS, one that cycles through
all possible deconfliction actions until it finds one that resolves
the conflict. In other words, this engine generates a possible
deconfliction action and tests it to see if it will work. This is
the "generate-and-test" deconfliction engine.

The major difference between case-based and generate-and-
test deconfliction is that the former elects to perform only the
best deconfliction actions based on its experience, while the
latter will try all steps.

Each change is tested against the same constraints as the
changes performed by the case-based deconfliction engine.
The sequence of changes attempted in this approach was
established in collaboration with experts, and represents an
increasing disturbance of the task. So, ICARUS will first
attempt the least intrusive changes, the ones that leave the
scheduling requests as unchanged as possible, and will
increasingly disturb these requests (within constraints) until a
solution is found.

E. Viewer
As deconfliction progresses, ICARUS displays messages

and progress bars on the screen to keep the user informed. The
user may also view the schedule before and after deconfliction
using our schedule viewer. An example of this is shown in
Figure 5.

The x-axis is time, here spanning four and a half days. The
span depends on the input schedule. The y-axis consists of the
satellite stations, read in from the ENV file. The color bars
represent the satellite contact tasks (a different color for a
different contact), red bars represent conflicts in the schedule,
and green bars represent station maintenance tasks.

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 75

Figure 5: Graphical View of Conflicted Schedule

IV. RESULTS
We evaluated our system on actual SCN schedules and

some of the results are shown on Table 1. The schedules
started with a number of tasks and conflicts due to conflicting
contact requests. ICARUS used all its deconfliction methods
sequentially (rule based, CBR, and generate-and-test), and the
results of each deconfliction step are listed in the table. For
example, the first schedule shown in Table 1 started with 379
conflicts and after applying the rule based deconflictor there
were 301 remaining conflicts, after applying CBR there were
300 conflicts, which were then lowered to 244 by generate-
and-test. The system iterated three times, and stopped after the
conflicts did not change after an iteration cycle.

We tested our system on SCN provided schedules, and after
ICARUS the average schedule was 75.3% clear of conflicts.
We also tested ICARUS on schedules created by experts and
which contained scheduling conflicts that the experts could not
resolve; in these tests our system managed to resolve on
average 44.4% of these conflicts, showing performance better
than human expert schedulers.

Table 1: Sample Deconfliction Results

Tasks

Initial

Conflicts

Iterations

(Orig→RuleBased→CBR→G&T)

Final

Conflicts
562 379 379→301→300→244

244→241→241→239
239→239→239→239

239

717 69 69→63→63→23
23→22→22→22
22→22→22→22

22

535 241 241→138→135→116
116→116→116→116

116

587 300 300→202→199→163
163→161→161→161
161→161→161→161

161

1505 617 617→458→447→352
352→350→350→348
348→348→348→348

348

V. CONCLUSIONS AND FUTURE WORK
Our work addressed an important operational need of

satellite control networks: how to resolve conflicting requests
for access to the ground station by space vehicles. This
problem is different from traditional scheduling or planning
ones, since it starts with an existing schedule which
corresponds to scheduling requests. These requests are often
conflicting, and require correction.

There are two potential extensions to ICARUS, both
improving its deconfliction performance. ICARUS could
implement hand-offs between ground stations. In other words,
a contact task could be shared between two stations, if it could
not be fully satisfied at one station. A large number of
conflicts can be resolved if a long contact request can be
broken into smaller contacts that are distributed over a set of
stations. Also, certain resources can be shared by multiple
tasks. Allowing sharing of resources and equipment will
improve deconfliction performance.

There will almost always be conflicts in every schedule that
cannot be resolved because of hard constraints. These
scheduling requests are denied by human users, something our
system is not allowed to do. Consequently, regardless of
improvements to our system, it will never generate a 100%
conflict-free schedule.

REFERENCES
[1] Loral Federal Services Corp. 1995. CCSU Resources Scheduling Study

Report Contract F04701-91-C-108, CDRL A115.
[2] M. Schmidt, and K. Schilling. 2009.“A Scheduling System with

redundant scheduling capabilities.” International Workshop for
Planning and Scheduling in Space, Pasadena, USA. 2009

[3] F. Marinelli, S. Nocella, F. Rossi, & S. Smriglio. 2011. “A Lagrangian
heuristic for satellite range scheduling with resource constraints”,
Computers and Operations Research, 38 (2011), 1572-1583.

[4] K. Yang and L. Xing. 2012. “The Learnable Ant Colony Optimization
to Satellite Ground Station System Scheduling Problems”, Electrical
Review, R. 88, NR 9b/2012, 62-65.

[5] A.E. Howe, L.D. Whitley, L. Barbulescu, J.P. Watson. 2000. “Mixed
Initiative Scheduling for the Air Force Satellite Control Network”,
Second International NASA Workshop on Planning and Scheduling for
Space, March 2000.

[6] L. Barbulescu, J.P. Watson, L.D. Whitley, A.E. Howe. 2004.
"Scheduling Space-Ground Communications for the Air Force Satellite
Control Network'', Journal of Scheduling, Vol. 7, Issue 1, pp. 7-34,
January.

[7] Loral Federal Services Corp. 1995. Automated Scheduling Tools for
Range Operations (ASTRO), Contract F04701-91-C-108, CDRL A058.

[8] Hendler et al. 1994. “Massively Parallel Support for Case-Based
Planning,” Proc. of APA/Rome Lab Planning Initiative Workshop,
Morgan Kaufmann.

[9] Mulvehill, A. 1995. “Reusing Force Deployment Plans,” AAAI Fall
Symposium on Adaptation of Knowledge for Reuse.

[10] Miyashita, K. and K. Sycara. 1994. “Adaptive Case-Based Control of
Schedule Revision,” in: Intelligent Scheduling, M. Zweben and M.S.
Fox (Eds.), San Francisco: Morgan Kaufmann, 291-308.

[11] Tsatsoulis, C., and Van Dyne, M. “ Integrating artificial intelligence
techniques to generate ground station schedules”, Proceedings of the
2014 IEEE Aerospace Conference, March 1-8, 2014, Big Sky, MT.

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 76

