
 

 

 

Abstract—Large amplitude (geometrically non-linear) vibrations 

of doubly curved shallow shells with rectangular base under the low-

velocity impact by an elastic sphere are investigated. It is assumed 

that the shell is simply supported and partial differential equations are 

obtained in terms of shell's transverse displacement and Airy's stress 

function. The local bearing of the shell and impactor's materials is 

neglected with respect to the shell deflection in the contact region. 

The equations of motion are reduced to a set of infinite nonlinear 

ordinary differential equations of the second order in time and with 

cubic and quadratic nonlinearities in terms of the generalized 

displacements.  Assuming that only two natural modes of vibrations 

dominate during the process of impact and applying the method of 

multiple time scales, the set of equations is obtained, which allows 

one to find the time dependence of the contact force and to determine 

the contact duration and the maximal contact force.  

 

Keywords—Doubly curved shallow shell rectangular in base, 

impact interaction, method of multiple time scales 

I. INTRODUCTION 

oubly curved panels are widely used in aeronautics, 

aerospace and civil engineering and are subjected to 

dynamic loads that can cause vibration amplitude of the order 

of the shell thickness, giving rise to significant non-linear 

phenomena [1]–[4].   

A review of the literature devoted to dynamic behaviour of 

curved panels and shells could be found in Amabili and 

Paidoussis [5], as well as in [3], wherein it has been 

emphasized that free vibrations of doubly curved shallow 

shells were studied in the majority of papers either utilizing a 

slightly modified version of the Donnell's theory taking into 

account the double curvature [1, 6] or the nonlinear first-order 

theory of shells [7, 8].  

Large-amplitude vibrations of doubly curved shallow shells 

with rectangular base, simply supported at the four edges and 
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subjected to harmonic excitation were investigated in [3], 

while chaotic vibrations were analyzed in [4]. It has been 

revealed that such an important nonlinear phenomenon as the 

occurrence of internal resonances in the problems considered 

in [3] and [4] is of fundamental importance in the study of 

curved shells.  

In spite of the fact that the impact theory is substantially 

developed, there is a limited number of papers devoted to the 

problem of impact over geometrically nonlinear shells.  

The nonlinear impact response of laminated composite 

cylindrical and doubly curved shells was analyzed using a 

modified Hertzian contact law  in [9] via a finite element 

model, which was developed based on Sander's shell theory 

involving shear deformation effects and nonlinearity due to 

large deflection. A nine-node isoparametric quadrilateral 

element was used to model the curved shell. The nonlinear 

time dependent equations were solved using an iterative 

scheme and Newmark's method. Numerical results for the 

contact force and center deflection histories were presented for 

various impactor conditions, shell geometry and boundary 

conditions. 

Later large deflection dynamic responses of laminated 

composite cylindrical shells under impact have been analyzed 

in [10] by the geometrically nonlinear finite element method 

based on a generalized Sander's shell theory with the first 

order shear deformation and the von Karman large deflection 

assumption.  

Nonlinear dynamic response for shallow spherical moderate 

thick shells with damage under low velocity impact has been 

studied in [11] by using the orthogonal collocation point 

method and the Newmark method to discrete the unknown 

variable function in space and in time domain, respectively, 

and the whole problem is solved by the iterative method. 

Further this approach was generalized for investigating 

dynamic response of elasto-plastic laminated composite 

shallow spherical shell under low velocity impact [12] and 

nonlinear dynamic response for functionally graded shallow 

spherical shell under low velocity impact in thermal 

environment [13].  

The nonlinear transient response of laminated composite 

shell panels subjected to low velocity impact in hygrothermal 

environments was investigated in [14] using finite element 

method considering doubly curved thick shells involving large 

deformations with Green-Lagrange strains. The analysis was 

carried out using quadratic eight-node isoparametric element. 
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A modified Hertzian contact law was incorporated into the 

finite element program to evaluate the impact force. The 

nonlinear equation was solved using the Newmark average 

acceleration method in conjunction with an incremental 

modified Newton-Raphson scheme. A parametric study was 

carried out to investigate the effects of the curvature and side 

to thickness ratios of simply supported composite cylindrical 

and spherical shell panels. 

The impact behaviour and the impact-induced damage in 

laminated composite cylindrical shell subjected to transverse 

impact by a foreign object were studied in [15] using three-

dimensional non-linear transient dynamic finite element 

formulation. Non-linear system of equations resulting from 

non-linear strain displacement relation and non-linear contact 

loading was solved using the Newton-Raphson incremental-

iterative method. Some example problems of graphite/epoxy 

cylindrical shell panels were considered with variation of 

impactor and laminate parameters and influence of geometrical 

non-linear effect on the impact response and the resulting 

damage was investigated. 

In the present paper, a new approach is proposed for the 

analysis of the impact interactions of nonlinear doubly curved 

shallow shells with rectangular base under the low-velocity 

impact by an elastic sphere. It is assumed that the shell is 

simply supported and partial differential equations are 

obtained in terms of shell's transverse displacement and Airy's 

stress function. The local bearing of the shell and impactor's 

materials is neglected with respect to the shell deflection in the 

contact region. The equations of motion are reduced to a set of 

infinite nonlinear ordinary differential equations of the second 

order in time and with cubic and quadratic nonlinearities in 

terms of the generalized displacements.  

Assuming that only two natural modes of vibrations 

dominate during the process of impact and applying the 

method of multiple time scales [16], the set of dynamic 

equations is obtained, which allows one to find the time 

dependence of the contact force and to determine the contact 

duration and the maximal contact force. 

II. PROBLEM FORMULATION AND GOVERNING EQUATIONS 

Assume that an elastic or rigid sphere of mass M moves 

along the z-axis towards a thin walled doubly curved shell with 

thickness h, curvilinear lengths a and b, principle curvatures kx 

and ky and rectangular base, as shown in Fig. 1. Impact occurs 

at the moment t=0 with the velocity εV0 (ε is a small value) at 

the point N with Cartesian coordinates x0, y0. 

     According to Donnell's nonlinear shallow shell theory, the 

equations of motion could be obtained in terms of lateral 

deflection w and Airy's stress function φ [17] 
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Fig. 1 Geometry of the doubly curved shallow shell 
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where 
3

2
=

12(1 )

Eh
D  is the cylindrical rigidity,  is the 

density, E  and  are the elastic modulus and Poisson's ratio, 

respectively, t  is time, 
0 0= ( ) ( ) ( )F P t x x y y  is the 

contact force, ( )P t  is yet unknown function,  is the Dirac 

delta function, x  and y  are Cartesian coordinates, overdots 

denote time-derivatives, ( , )x y  is the stress function which is 

the potential of the in-plane force resultants  
 

         
2 2 2

2 2
= , = , = .x y xyN h N h N h

y x x y
             (3)    

 

    The equation of motion of the sphere is written as  
 

                           = ( )Mz P t                                              (4) 

 

subjected to the initial conditions  

  

            
0(0) = 0, (0) = ,z z V        (5) 

 

where ( )z t  is the displacement of the sphere, in so doing  

 

                        
0 0( ) = ( , , ).z t w x y t                                       (6) 

     Considering a simply supported shell with movable edges, 

the following conditions should be imposed at each edge:  

 

0
= 0, = 0, = 0, = 0, at = 0, ,

b

xy x xw N dy N M x a  (7) 

  

0
= 0, = 0, = 0, = 0, at = 0, ,

a

xy y yw N dx N M y b  (8) 
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where 
xM  and yM  are the moment resultants. 

      The suitable trial function that satisfies the geometric 

boundary conditions is  

          
=1 =1

( , , ) = ( ) sin sin ,
p q

pq

p q

p x q y
w x y t t

a b
 (9) 

where p and q are the number of half-waves in x and y  

directions, respectively, and ( )pq t  are the generalized 

coordinates. Moreover, p  and q  are integers indicating the 

number of terms in the expansion. 

      Substituting (9) in (6) and using (4), we obtain  
 

           0 0

=1 =1

( ) = ( ) sin sin .
p q

pq

p q

p x q y
P t M t

a b
 (10) 

 

       In order to find the solution of the set of equations (1) and 

(2), it is necessary first to obtain the solution of  (2). For this 

purpose, let us substitute (9) in the right-hand side of  (2) and 

seek the solution of the equation obtained in the form  
 

         
=1 =1

( , , ) = ( ) sin sin ,
m n

mn

m n

m x n y
x y t A t

a b
 (11) 

where ( )mnA t  are yet unknown functions. 

      Substituting (9) and (11) in (2) and using the orthogonality 

conditions of sines within the segments 0 x a  and 

0 y b , we have  

  

2

2
2 2

3 3 2 2

( ) = ( )

4
( ) ( ),

mn mn mn

pqklmn pq kl

k l p q

E
A t K t

E m n
B t t

a b a b

 (12) 

where  
(2) 2 2 (1)= ,pqklmn pqklmn pqklmnB pqklB p l B  

(1)

0 0
= sin sin sin

sin sin sin ,

a b

pqklmn

p x q y k x
B

a b a

l y m x n y
dxdy

b a b

 

 (2)

0 0
= cos cos cos

cos sin sin ,

a b

pqklmn

p x q y k x
B

a b a

l y m x n y
dxdy

b a b

        (13) 

    

2 2
2 2 2 2

2 2 2 2
= .mn y x

m n m n
K k k

a b a b
 

     Substituting then (9)-(12) in (1) and using the orthogonality 

condition of sines within the segments 0 x a  and 

0 y b , we obtain an infinite set of coupled nonlinear 

ordinary differential equations of the second order in time for 

defining the generalized coordinates  

 
2

2

3 3

4

6 6

0 0

0 0

( ) ( )

8 1
( ) ( )

2

32
( ) ( ) ( )

4
sin sin

( )sin sin

mn mn mn

pqklmn kl mn pq kl

p q k l

rsijmn pqklij rs pq kl

r s i j k l p q

pq

p q

t t

E
B K K t t

a b

E
B B t t t

a b

m x n yM

ab h a b

p x q y
t

a b
= 0, (14)

  

where 2

mn  are natural frequencies of the target defined as 

         

2
4 2 2 2

2

2 2 2
= .

12(1 )
mn mn

E h m n
K

a b
              (15) 

 

   The last term in each equation from (14) describes the 

influence of the coupled impact interaction of the target with 

the impactor of the mass M applied at the point with the 

coordinates x0, y0.    

    In order to study this additional nonlinear phenomenon 

induced by the coupled impact interaction, we suppose that 

only two natural modes of vibrations are excited during the 

process of impact, namely,  and . Then the set of 

equations (14) is reduced to the following two equations 

written in the dimensionless form: 

       

2 2 2

11 1 12 2 1 1 13 1 14 2 15 1 2

3 2

16 1 17 1 2 0,

p p p p p

p p
         (16) 

   

2 2 2

21 1 22 2 2 2 23 2 24 1 25 1 2

3 2

26 2 27 1 2 0,

p p p p p

p p
      (17) 

where 1
a

, 2
a

, *

1 =  and *

2 =  are 

dimensionless natural frequencies  
2

4 2 2
*2 2 2 4

2 2 2
=

12(1 )
mn mn

h a
m n a K

a b
, dimensionless 

coefficients ijp (i=1, 2; j=1, 2,…,7) could be easily obtained 

from (14) using (13), wherein x
*
=x/a, y

*
=y/b, and * t E

t
a

.  

III. METHOD OF SOLUTION 

    In order to solve a set of two nonlinear equations (16) and 

(17), we apply the method of multiple time scales [16] for 

constructing the solution of Eqs. (13) 

                    
1 2 2

1 0 1 0 1( ) = ( , ) ( , ),t X T T X T T    (18) 

                    
1 2 2

2 0 1 0 1( ) = ( , ) ( , ),t X T T X T T    (19) 

where = n

nT t  are new independent variables, among them: 

0 =T t  is a fast scale characterizing motions with the natural 

frequencies, and 
1 =T t  is a slow scale characterizing the 
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modulation of the amplitudes and phases of the modes with 

nonlinearity. 

      Considering that  
2

2 1 2 2 2 1

0 0 0 12
= ( ) ( 2 ),i ij ij ij

d
D X D X D D X

dt
 

where =ij  or , and = /n n n

i iD T  ( =1,2, = 0,1n i ), 

and substituting the proposed solution (18) and (19) in (16) 

and (17), after equating the coefficients at like powers of  to 

zero, we are led to a set of recurrence equations to various 

orders: 

to order   

             2 1 2 1 2 1

11 0 1 12 0 2 1 1 = 0p D X p D X X ,                           (20) 

             2 1 2 1 2 1

21 0 1 22 0 2 2 2 = 0p D X p D X X ;                          (21) 

to order ε
2 

             
2 2 2 2 2 2 1

11 0 1 12 0 2 1 1 11 0 1 1

1 1 2 1 2 1 1

12 0 1 2 13 1 14 2 15 1 2

2

2 ( ) ( ) ,

p D X p D X X p D D X

p D D X p X p X p X X
    (22) 

             
2 2 2 2 2 2 1

21 0 1 22 0 2 2 2 21 0 1 1

1 1 2 1 2 1 1

22 0 1 2 23 1 24 2 25 1 2

2

2 ( ) ( ) ,

p D X p D X X p D D X

p D D X p X p X p X X
      (23)  

where for simplicity is it denoted 1 1

1 = ,X X  1 1

2 = ,X X  

2 2

1 = ,X X  and 2 2

2 =X X .  

 

A. Solution of Equations at Order of ε  

    Following Rossikhin and Shitikova [21], we seek the 

solution of (20) and (21) in the form:  

 

                   1 0 2 01

1 1 1 2 1( ) ( ) cc
i T i T

X A T e A T e ,                     (24)                  

                  1 0 2 01

2 1 1 1 2 2 1( ) ( ) cc
i T i T

X A T e A T e ,                   (25) 

where 
1 1( )A T  and 

2 1( )A T  are unknown complex functions, cc 

is the complex conjugate part to the preceding terms, and 

1 1( )A T  and 2 1( )A T  are their complex conjugates, 

                       
2 2 2 2 2 2 2

22 1 11 2 22 1 11 2 1 2 12 212

1,2

11 22 12 21

( ) ( ) 4

2( )

p p p p p p

p p p p
,       

   
2

2

2
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2
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2
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2

1

2

111
1

p

p

p

p           

    
2

2

2

222

2

221

2

212

2

1

2

211
2

p

p

p

p ,                      (26) 

    
11 11p d ,        

22 21p d ,      12 21 1 2

4
= = ,

M
p p s s

hab
 

            
2 2

1 1 2 2

4 4
= , = ,

M M
d s d s

hab hab
 

     
* *

1 0 0= sin( )sin( ),s x y * *

2 0 0= sin( )sin( )s x y . 

     Reference to relationships (26) shows that 1  and 
2
 are 

the frequencies of the coupled process of impact interaction of 

the impactor and the target. As the impactor mass M →0, the 

frequencies 1  and 
2
 tend to the natural frequencies of the 

shell vibrations 
1
 and 

2
, respectively. Coefficients 

1s  and 

2s  depend on the numbers of the natural modes involved in 

the process of impact interaction, αβ and γδ, and on the 

coordinates of the contact force application * *

0 0,x y , resulting in 

the fact that their particular combinations could vanish 

coefficients 
1s  and 

2s  and, thus, coefficients 
12 21=p p .             

 

B. Solution of Equations at Order of ε
2
  

Substituting (24) and (25) in (22) and (23), we obtain  
 

1 0

2 0

1 0

2 0

1 2 0

2 2 2 2 2 2

11 0 1 12 0 2 1 1 1 11 1 12 1 1

2 11 2 12 1 2

22

13 1 14 1 15 1 1 1

22

13 2 14 2 15 2 2 2

13 1 2 14 1 2 15 1

( )

2 2

2 ( )

2 ( )

( )

( )

2 ( )

i T

i T

i T

i T

i T

p D X p D X X i p p e D A

i p p e D A

p p p A A e A

p p p A A e A

p p p A

A e A 1 2 0( )
cc,

i T
e

      (27) 

1 0

2 0

1 0

2 0

1 2 0

2 2 2 2 2 2

21 0 1 22 0 2 2 2 1 21 1 22 1 1

2 21 2 22 1 2

22

23 1 24 1 25 1 1 1

22

23 2 24 2 25 2 2 2

23 1 2 24 1 2 25 1

( )

2 2

2 ( )

2 ( )

( )

( )

2 ( )

i T

i T

i T

i T

i T

p D X p D X X i p p e D A

i p p e D A

p p p A A e A

p p p A A e A

p p p A

A e A 1 2 0( )
cc.

i T
e

     (28) 

For the obtained set of coupled equations (27) and (28) all 

terms proportional to 1 0i T
e  and 2 0i T

e are circular terms, so 

they should be eliminated from the further solution.  

    Thus, we obtain the following conditions of solvability: 
 

                    
1 1 0D A ,        

1 2 0D A ,                                (29) 

 

whence it follows that the functions 
1A  and A2 are T1- 

independent.  

 

C. Determination of the Contact Force 

    Representing 
1A  and A2 in the polar form 

               = ( =1,2),
i

i
i iA a e i    (30) 

 

relationships (24) and (25) take the form 

 

   1

1 1 1 1 2 2 2= 2 (0)cos[ (0)] 2 (0)cos[ (0)],X a t a t               (31) 

 

   1

2 1 1 1 1 2 2 2 2= 2 (0)cos[ (0)] 2 (0)cos[ (0)]X a t a t ,      (32) 

 

wherein the initial amplitudes (0)ia  and phases (0)i
should 

be determined from the initial conditions. 

       Considering (31) and (32), the solution for the shell 

deflection (9) at the point of impact and the contact force (10) 

is the following: 

                    
1 1

0 0 1 1 2 2( , , ) = ( )w x y t X s X s ,                          (33)  

                    
1 1

1 1 2 2( ) = ( )P t M X s X s .                             (34) 
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IV. CONCLUSION 

The procedure proposed in the present paper allows one to 

investigate the dynamic response of a nonlinear doubly curved 

shallow shell impacted by a sphere, to find the time 

dependence of the contact force and to determine the contact 

duration and the maximal contact force. 
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