
 

 

 

Keywords— Nondominated Sorting, Particle swarm 
optimization, Generation Cost, Emission, Losses.  

 
Abstract— This paper presents a new multi-objective 

optimization approach based on non-dominated sorting to solve 
complex problem subject to the heavy equality and inequality 
constraints in power system. The proposed approach employs 
application of non-dominated sorting mechanism based on crowding 
distance calculation to produce a well distributed Pareto-optimal set 
of non-dominated solutions. Moreover, fuzzy set theory is employed 
to extract the best compromise solution over the trade-off curve. 
Several optimization runs of the proposed approach are carried out on 
the standard IEEE-30 bus test system. The results demonstrate the 
capabilities of the proposed approach to generate true and well-
distributed Pareto-optimal non-dominated solutions of the multi-
objective problem in one single run. Finally, some of the system 
objectives are improved by sacrificing other objectives. The 
transmission losses, emission and generation fuel cost objectives are 
optimized simultaneously using the proposed algorithm. 
 

I. INTRODUCTION 
HE Optimal Power Flow (OPF) is a popularly used 
method in electrical power system for effective controlled 
operation and proper planning towards meeting the load 

growth subjected to meeting various objectives. The chief 
necessity of the optimization of the power flow is to estimate 
the proper combination of the controllable parameters like 
voltage and real power generation at generator buses, tap 
setting of the transformers in transmission lines, value of 
compensating capacitors towards minimization of the specific 
objective functions. A problem with more number of 
controllable parameters makes the system non-linear and 
discontinues. So, traditional solution methodologies failed to 
give an optimized global solution.  

The conventional dynamic technique is applied to OPF 
problem and benders decomposition for effective scheduling 
in a power system to meet the required demand at minimum 
production cost [1, 2]. At power stations, various strategies 
like installation of electrostatic precipitators and gas 
scrubbers, replacement of fuel-burners, efficient cleaners and 
shifting towards low emission fuels are the alternatives for low 
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emission dispatch. These options can be made for long-run 
planning. In [3], a strategy to minimize emission was 
proposed. 

In power system, minimizing of transmission real power 
losses can be considered as one of the objective functions for 
the effective reactive power dispatch [4].  

The literature concentrated on the application of 
evolutionary optimization techniques to OPF problems like, 
linear and non-linear programming [5-7], Newton's method 
[8], Quadratic Programming [9], Fast Successive Linear 
Programming algorithm [10], etc. At present, these 
evolutionary algorithms are promoted to overcome the 
drawbacks of the traditional optimization techniques, as their 
inherent capability of processing towards the best result and 
extensive exploration in search space [11].  

The algorithms like Multi-Objective Stochastic Search 
Techniques (MOSST) [12], Multi-Objective Evolutionary 
Algorithm (MOEA) [13], Strength Pareto Evolutionary 
Algorithm (SPEA) [14], Niched Pareto Genetic Algorithms 
(NPGA) [15] and Nondominated sorting in Genetic 
Algorithms (NSGA) [16], etc., can be used to solve multi 
objective optimization problem.  

PSO is a stochastic algorithm that can be applied to non-
linear optimization problems. PSO has been developed from 
the simulation of simplified social systems such as bird 
flocking and fish schooling by Kennedy and Eberhart [17]. 

The main contribution of this paper is “the application of 
Nondominated Sorting methodology with Particle Swarm 
Optimization (NDSPSO)” to organize objectives on a given 
system subjected to satisfy multiple objectives and to find 
globally compromised solution using fuzzy decision-making 
tool. 

The proposed methodology is applied to IEEE-30 bus test 
system. Some of the results of the proposed method were 
compared with the results of the existing method [5].  

II. PROBLEM STATEMENT 
Many of the optimization problems discussed in the 

literature is restricted to either of the certain objectives like 
Generation Cost, Emission, and Losses etc. But in practice it is 
necessary to optimize many of the above objectives 
simultaneously, subjected to equality, inequality, practical and 
operating constraints. Hence, it is clear that the effectiveness 
and efficiency of multi-objective algorithm gives best 
compromised solution subjected to constraints on a system.  
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A multi-objective optimization technique NDSPSO is 
applied to optimize system objectives such as Generation 
Cost, Emission, and Losses simultaneously subjected to the 
system constraints.  

Aggregating all objectives and constraints, the problem 
can be formulated mathematically as a constrained nonlinear 
multi-objective optimization problem as follows: 

 
 

Subject to  
 
 

where ‘ ’ and ‘ ’ are the equality and inequality constraints 
respectively and  is a control vector of variables 
corresponding to solution.  and  are number of objective 
functions. 

The organization of the paper is given as: Constrained 
Problem formulation, multi-objective optimization approach 
with algorithm and corresponding numerical results are given 
in sections III, IV, and V respectively. 

III. PROBLEM FORMATION 
Multi-objective optimization can have two or more 

objective functions to be optimized at same time. As a result, 
there is no unique solution to multi-objective optimization 
problems, but the aim is to find all possible compromised 
solutions available in search space (called Pareto front set). 

A. Generation Fuel Cost 
The fuel cost function which satisfies particular operating 
constraints and practical loading concern can be represented 
approximately by a simple quadratic function, under the 
assumption that the incremental cost curves of the generating 
units are monotonically increasing piecewise linear functions. 
The fuel cost function of any generator can be mathematically 
expressed as 

 

where  is the number of generators, ,  and are the 
cost coefficients and is the real power output of 

generator. 

B. Emission 
While minimizing fuel cost of generating units, may 

produce high levels of  and  emissions [18]. 
The total  atmospheric pollutants such as Sulpher 

oxides  and Nitrogen oxides   emitted by [5] is
  

 

 
where are emission coefficients of the 

 generator.  

C. Power System Active Power Losses 
In power system to enhance power delivery performance, 

one of the important issues to be considered is active power 
loss.  

 

 
where  is total number of transmission lines,  is the 

conductance of  line which connects buses and . 
 are voltage magnitude and angle of 

buses. 

D. Constraints 
Equality constraint 

This constraint is typically load flow equations. 
• Power balance constraint 

=  +  

E. In equality constraints 
These constraints represent system operating limits. 
• Active and reactive power generation constraint 

 
 

where  are the active and reactive power 
generations of  generator, , and , 

 are the corresponding minimum and maximum 
active and reactive power generation limits of the  
generator. 

• Security constraint 
  

where  is the line  flow and  is the 
maximum  flow limit of the line,  is the 
total number of lines. 

• Transformers tap position constraint 
 

where  and  are the minimum and 
maximum tap positions of the  transformer, 
respectively,  is the total number of tap positions. 

• Bus voltage magnitude constraint 
 

where  is the bus voltage magnitude, and 
 are the minimum and maximum voltage 

magnitude values of the bus, respectively. 
• Switchable VAr sources constraint 

 
where  and  are the minimum and 
maximum values of the reactive power compensated 
by the  capacitor and  is the number of 
compensators respectively. 

A penalty function [19] is added to the objective function, if 
any of the controllable parameters violates any of the 
constraints. The methodology of the penalty handling is 
considered as in [20]. The penalized objective function can be 
written as the sum of unpenalized objective function  
plus penalty. 
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where  are penalty factors. ‘ ’ is the 
number of buses,  is the limit value of the dependent 
variable ‘ ’ given as 

 

IV. MULTI-OBJECTIVE SOLUTION APPROACH 
Multi-objective optimization means optimizing multiple 

objectives of a system simultaneously and systematically. 
Generally, these objective functions are peculiar and often 
challenging and inconsistent. Multi-objective optimization 
with such challenging objectives produces set of optimal 
solutions, instead of a single optimal solution. The reason for 
this type of   optimality is that, choosing better choice to all 
objective functions as per the requirement consist many issues. 
These optimal solutions are known as Pareto front sets. 

A general multi-objective optimization problem consists of 
a number of objectives to be optimized (either minimization 
and/or maximization) simultaneously and is associated with a 
number of equality and inequality constraints given in 

 subject to control vector  
consisting of generator bus voltage magnitudes, active power 
generations, transformer tap settings, and reactive shunt 
compensators. 

 
 

where are the number of generators, number of 
regulating transformers, and number of shunt compensators, 
respectively. 

For a multi-objective optimization problem, let any two 
solutions  and  can have one of two possibilities: one 
prevails the other or none prevails the other. If  leads the 
solution ,  is called the nondominated solution. The 
solutions that are nondominated within the search space are 
expressed as Pareto front and composed as Pareto optimal set. 

A. Non Dominated Sorting 
Deb [21] proposed a nondominated sorting method to 

solve multi-objective optimization problems. There is a 
requirement to find multiple Pareto front sets in a single run. 
The fundamental reason behind this multi-objective problem 
formulation is that it is not probable to have a single solution 
which optimizes all objectives [22].  

In order to find the superiority of each solution in a 
population of size  with respect to other solutions 
corresponds to other populations, sorting and comparison 
operations are performed.  This needs  comparisons for 
each solution, where  is the number of objectives. At first 
the nondominated front set is found by using comparison 
operation on all individuals. In order to find the next front, the 
comparison procedure for the remaining individuals needs to 
be repeated. 

Again new population is generated along with the current 
population, comparison and sorting procedures are applied to 

obtain best  individuals from the total individuals where  is 
the population size. The sorting is based on the crowding 
distance between the Pareto front sets. 

B. Detailed description 
1) Population initialization 
The population for the control parameters is initialized 

between the ranges. 
2) Nondominated sort 
The generated population is ordered based on individual 

domination with the other individuals. The algorithm is 
described in [21] is used for sorting Pareto front solutions. 

3) Crowding distance 
Crowding distance is calculated for the individuals after 

nondominated sorting procedure is completed. Finally main 
front sets are selected based on crowding distance of the 
individuals in the front set.  
       The fundamental idea behind the calculation of crowding 
distance is to find the Euclidian distance between each 
individual in a Pareto front, based on their  objectives in 
the  dimensional solution space. The individuals in the 
boundary are always selected since they have infinite distance 
assignment.  

C. Particle Swarm Optimization [28] 
Particle swarm optimization conducts its search using a 

population of particles. Each particle in PSO changes its 
position according to new velocity and the previous positions 
in the problem space. 

Because of the advantages of the PSO, like simple concept 
and implementation mechanism, handling of control 
parameters, finding procedure of the global best solution is 
chosen to implement the defined solution methodology. 
In PSO, the particle velocity and the position in th 
iteration is updated using  

 

 

 

 

 
where k is the iteration count, and  are acceleration 

coefficients,  and  are uniformly distributed 
random numbers in [0 1].  is the best position found by 
the particle  so far,  is the position among all particles. 
Here, the second part is a cognitive part and has its own 
thinking and memory. The third term is the social parameter 
on which the particle changes its velocity.  is the inertia 
weight and can be calculated as follows 

 

  Equations  have three tuning parameters ω, 
and  that greatly influence the PSO algorithm 

performance. The value of  was proposed linearly with time 
from a value of 1.4–0.5 [23]. As such global search starts with 
a large weight value and then decreases with time to favor 
local search over global search [24]. In this paper, the 
methodology to find values for the tuning parameters and the 
procedure of updating dynamic inertia weight is implemented 
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[5]. Because this provides a balance between global and local 
explorations, thus it needs less number of iterations to get an 
optimal solution. 

D. Best compromise solution 
Upon having the multiple nondominated Pareto front sets, 

fuzzy decision maker is used to select the best compromised 
solution. The  objective function  is represented by a 
membership function μm defined as in [25] 

 

for minimization of objectives where  and  are 
the minimum and maximum value of the objective 
function among all non-dominated solutions, respectively. 

For each solution in nondominated front set , the 
normalized membership function  is calculated as  

 

where  is the number of non-dominated solutions. The 
best compromised solution is the one corresponds to the value 
of . 

E. The computational flow 
The main objective is to find the multi-objective optimized 

loadability estimation on a system by satisfying the 
constraints. In NR load flow, the ‘Qgen’ limits at generator 
buses are verified and the same bus has been converted into 
the load bus if any of the minimum/maximum values is 
violated.  The chaotic formula for the inertia weight and the 
self adaptive method for computing the learning factors beside 
the proposed algorithm work well for multi-objective 
optimization problems. So, proper weight should be given to 
the objectives to get an optimized performance on a system. 
As a matter of fact, after acquiring the Pareto front solutions, 
the decision maker needs to choose one best solution 
according to the requirement. In this study, W1, W2, and W3 are 
the weights of corresponding objective functions, respectively, 
and also . 

F. Setting of the proposed approach 
The methodology used in this study was developed and 

tested on 2.19 GHz PC with 2GB RAM using MATLAB 
platform. On all optimization runs, the PSO population size 
and the maximum number of iterations were considered as 100 
and 100 respectively. 

V. NUMERICAL RESULTS 
In this study, the standard IEEE 30-bus, 6-unit test system is 

considered to investigate the effectiveness of the proposed 
approach. The system data is taken from [26, 27].  

The entire analysis is divided into cases I, II, and III which 
corresponds to single, two and three objectives optimization 
problem respectively. The detailed analysis of each case is 
presented in the following sections. Some of the results of the 
proposed method are compared with the existing method [5] 
and are given in Appendix A. 

i. Case – I (Single objective) 
The result of control variable variation corresponding to 

the multiple objectives is given in Table 1. It is observed that 
the minimization of cost function results in increase of the 
emission by a factor of 0.7904 and losses by 1.9874 (all 
factors are with respect to their minimized values). Table 1 
reveals that the minimization of emission function results in 
increase of the cost by a factor of 0.1801 and losses by 0.0709. 
Minimization of losses in the system increases the cost by a 
factor of 0.2089 and emission by 0.0119. The corresponding 
convergence patterns are shown in Fig 2. 

Table 1.  Control variables related to multiple objectives 

 Cost, $/h Emission, ton/h Loss, MW 

Pg1, MW 177.22929 64.00868 51.39099 
Pg2, MW 48.550303 67.59438 80.00 
Pg3, MW 21.462934 50.00 50.00 
Pg4, MW 21.211045 35.00 35.00 
Pg5, MW 11.881975 30.00 30.00 
Pg6, MW 12.000032 40.00 40.00 
Vg1, pu 1.1 1.092719 1.1 
Vg2, pu 1.0370108 1.082577 1.041686 
Vg3, pu 1.0646606 1.057189 1.083148 
Vg4, pu 1.0544999 1.068489 1.087906 
Vg5, pu 0.9634969 0.944209 1.099556 
Vg6, pu 1.1 1.093477 1.1 

Tap6-9, pu 0.9514214 1.015055 1.017291 
Tap6-10, pu 0.9910521 0.9562 0.968865 
Tap4-12, pu 0.9919611 0.994948 0.983142 
Tap27-28, pu 0.9679805 0.966505 0.970435 

QC10 15.974439 17.78494 21.07306 
QC24 10.460198 17.53809 11.67689 
Cost 800.17747 944.3457 967.4024 

Emission 0.3664768 0.204683 0.207122 
Loss 8.9355744 3.203066 2.99099 

 
(a) Cost minimization, (b) Emission minimization, (c) Loss minimization, 

Figure 2. Convergence pattern of the objective functions 
ii. Case – II (Two objectives) 

In this case, the proposed methodology handles two 
objectives together as multi-objective optimization problem. 
There are three possible combinations with three objective 
functions. For each combination there are nine sets, which are 
selected based on the distribution of weights between 
objectives. Due to space limitation, the results of the best 
compromised over Pareto optimal solutions for Cost-Emission 
combination is given in Table 2. The corresponding variation 
of active power generations, voltages, tap positions and QC 
values with respect to sets is shown in Fig 3. 

Table 2. Multi-objective optimized result for different sets (weight factors) 
W1 W2 COST EMISSION 
0.9 0.1 805.9989 0.311993 
0.8 0.2 805.9989 0.311993 
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0.7 0.3 814.6776 0.279295 
0.6 0.4 820.8772 0.265939 
0.5 0.5 830.0619 0.251936 
0.4 0.6 844.5205 0.23754 
0.3 0.7 862.3286 0.225341 
0.2 0.8 880.9416 0.217372 
0.1 0.9 907.6102 0.211557 

 
Figure 3. Variation of PG, VG, Tap, and QC for different Cost-Emission sets 

For the remaining combinations, selective analysis is given Table 3. 
Table 3. Multi-objective result for different weight factors (Two objectives) 

W1 W2 W3 Cost 
($/h) 

Emission 
(ton/h) 

Loss 
(MW) 

0.8 0.2 0 805.9989 0.3119 - 
0.5 0.5 0 830.0619 0.2519 - 
0.2 0.8 0 880.9416 0.2174 - 
0.8 0 0.2 809.8782 - 6.9513 
0.5 0 0.5 824.0478 - 5.6957 
0.2 0 0.8 860.8800 - 4.5731 
0 0.8 0.2 - 0.2047 3.1200 
0 0.5 0.5 - 0.2054 3.0738 
0 0.2 0.8 - 0.2062 3.0391 

Table 3 reveals that the importance of the objective function 
gives the suitable minimized value. Highest generation cost 
(880.9416 $/h) is possible with the emission (0.2174 ton/h). 
Two dimensional plots for the following combinations are 
shown in Fig 4. 

 
                         (a)                      (b) 

 
(c) 

(a) Cost – Emission   (b) Cost – Loss (c) Emission – Loss 
Figure 4. Two dimensional best Pareto-optimal fronts 

iii. Case – III (Three objectives) 
Here in this case all the three objectives are considered to 

form multi-objective optimization problem. With three 
objectives the possible number of sets is 34 based on weights 

distribution, here some sample sets are considered and are 
tabulated in Table 4, which shows the effectiveness of the 
algorithm. 
Table 4. Multi-objective result for different weight factors (Three objectives) 

W1 W2 W3 Cost 
($/h) 

Emission 
(ton/h) 

Loss 
(MW) 

0.8 0.1 0.1 807.0440 0.305555 7.733541 
0.1 0.8 0.1 914.1322 0.211742 4.766982 
0.1 0.1 0.8 883.9452 0.223555 4.571413 
0.4 0.4 0.2 857.5084 0.230174 5.067601 
0.4 0.2 0.4 857.5084 0.230174 5.067601 
0.2 0.4 0.4 882.7626 0.221819 4.629423 
0.3 0.3 0.4 869.4727 0.22509 4.856591 

       From the Table 4 it is clear that, the maximum cost 
(914.1322) is possible with the emission (0.2117) and loss 
(4.7669). The generated Pareto fronts confines to entire trade-
off regions; this is because of the effectiveness of the proposed 
methodology. 
       The three dimensional Pareto fronts for three objective 
functions is shown in Fig 5. 

  
Figure 5. Three dimensional Pareto fronts for Cost-Emission-Loss 

VI. CONCLUSION 
The stated hypothesis has been proved and validated with 

proposed NDSPSO algorithm. The handling of the multiple 
objectives needs a lot of expertise and estimating simultaneous 
control actions towards the objective optimization has been 
validated with the proposed method. The objectives generation 
cost, emission and loss are optimized subjected to equality, 
inequality and physical constraints. The proposed evolutionary 
algorithm named “NDSPSO” shows its capability to handle 
different objectives based on its nature (i.e minimizing certain 
objectives). The fuzzy decision making tool to select best 
Pareto front from the generated Pareto optimal solutions 
proves its effectiveness in selection of globally best solution. 
The developed code takes around 60-80 seconds for the 
combinations. Since the proposed methodology uses the 
calculation of acceleration coefficients and inertia weight 
based on the nature of the solution and it can be applied to any 
type of the objectives 

APPENDIX 
The results validation of proposed method is compared 

with the existing method [5] and is tabulated in Table.A1. 
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From Table.A1, it is observed that, the proposed methodology 
yields better results. 
Table A1. Comparison between Multi-objective results for IPSO & NDSPSO 

Weights Existing IPSO [5] Proposed NDSPSO 

W1 W2 W3 Cost 
($/h) 

Emission 
(ton/h) 

Loss 
(MW) 

Cost 
($/h) 

Emission 
(ton/h) 

Loss 
(MW) 

0.8 0.2 0 823.134 0.2751 - 805.998 0.312 - 
0.5 0.5 0 841.052 0.2585 - 830.061 0.252 - 
0.2 0.8 0 860.421 0.2383 - 880.941 0.217 - 
0.8 0 0.2 839.843 - 8.976 809.878 - 6.951 
0.5 0 0.5 850.916 - 7.893 824.047 - 5.696 
0.2 0 0.8 869.731 - 6.775 860.880 - 4.573 
0 0.8 0.2 - 0.2061 5.213 - 0.205 3.120 
0 0.5 0.5 - 0.2063 5.179 - 0.205 3.074 
0 0.2 0.8 - 0.2066 5.162 - 0.206 3.039 
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