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Abstract—Due to the high complexity of the actual Productive 

Systems, the current industrial standards, and the possible negative 
impacts on the human being, on the environment and on equipment in 
case of faults, the development of control solutions that are both 
secure and stable – as some systems have to operate nonstop – is 
much demanded.  In this context, the development of safety control 
systems which simultaneously present high reliability and availability 
is required. The concepts of SIS, according to experts, may be one 
solution to these problems. Due the complexity of these systems, 
project mistakes are expected during their development and thus, 
validation and verification processes became an imperative – as well 
as a normative requirement – before the actual deployment of the 
control software on site. One of the most outstanding system 
verification techniques is the Model Checking, which performs an 
exhaustive search on the state space of an event driven system and 
checks some specific properties written in temporal logic.  The 
GHENeSys environment will be used as computational tool, as it 
provides a complete solution for modelling and verifying systems 
based on the GHENeSys network. The proposed methodology will 
then be applied to the development of a SIS control system to be 
implemented on a flexible manufacture system, which simulates 
assembly and handling of parts. 
 

I. INTRODUCTION 
he growing demand on cost and quality of products and 
services, the highly competitive market with several 
players, the increasing hardware storage capacity, 

processing power and networks speeds, and above all, the 
concern with the environment, the foundation of all current 
suitability policies caused an implementation of more complex 
control systems in the most diverse areas, from the production 
of consumer products to services [1]. 

The increasing implementation of processes automation, 
mandatory for costs reductions and quality improvements, key 
factors to the survival of a company in a highly competitive 
market, induced an ever increasing complexity of the control 
systems required for these systems [2] [3] 
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Being the control software increasingly complex, and the 
quality requirements more and more severe, there is a demand 
for more detailed and concise specification as well as a better 
control of the development process. It is also required a deeper 
understanding of the system to be controlled, including details 
regarding all relevant sub-systems and furthermore, how 
several system interacts and communicates with each other 
and with the environment, as the behavior of an 
interconnected system depends not only of its internal 
variables, but also of external events originated from the 
surrounds of the system [4] [5]. 

Additionally, any industrial system, as modern and 
innovative as it can be, still may pose serious risks to 
equipment, to operators and to the environment, in the event 
of a fault failing to be diagnosed and treated correctly [6].  
Although many studies have been presented for diagnosis and 
treatment of faults, accidents still occur. The main problem is 
that there is no zero risk in process industries since: (i) 
physical devices do not have zero risk of fault, (ii) human 
operators do not have zero risk of error and (iii) there is no 
computational system that can predict all the reachable states 
by the system [7].  

According to experts, the concepts of safety instrumented 
systems (SIS), is one solution to these types of issues. They 
strongly recommend the implementation of layers of risk 
reduction based on control systems organized hierarchically in 
order to manage risks by either preventing or mitigating faults, 
bringing the process to a safe state. In this sense, some safety 
standards such as IEC 61508 [8], IEC 61511 [9] among others, 
guide different activities related with a SIS Safety Life Cycle 
(SLC), such as design, installation, operation, maintenance, 
tests and others [10][11]. 

On this context, the processes of understanding, specifying, 
modelling and validating these systems became a highly 
complex task, resulting in great hardships on their 
development. Due all this, project mistakes are associated with 
the development of these systems and thus, validation and 
verification processes became an imperative before the actual 
deployment of the control software on the actual plant [3] [4].  
Besides the obvious necessity of verifying and validating 
critical systems, these activities are required by the safety 
standard IEC 61511 [9] as part of the safety program 
development cycle, also known as “V-model. 

Model Checking is a verification technique for finite state 
concurrent systems, and thanks to this restriction, the 
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verification processes can be performed semi-automatically, 
being human interaction only needed for the analysis of the 
results. The basic procedure performs an exhaustive search of 
the space state of an event driven system, verifying properties 
specified from propositions described using some temporal 
logic.  Given enough time and computational power, the 
procedure will always finish with a positive or negative result, 
in case of a negative result; a counterexample is given by the 
system, helping the designer to find the source of error [12]. 

In this work we propose the first steps towards the 
development of a framework for the modelling and formal 
verification of SIS control programs based on the IEC 61511 
standard.  On the framework, we expect to propose methods, 
techniques and systematics to comply with all phases of the 
“V model” according to the IEC 51511 standard.  With the 
complete framework we expect to aid the control engineers to 
develop SIS control programs in a structured and well defined 
way as well as fulfilling the requirements of the IEC 51511 
standard.   

The GHENeSys environment will be used as computational 
tool modelling and verification processes, the environment is a 
proposal of the DesignLab from USP and was originally 
designed as unified approach to cover several types of Petri 
Nets as well as its extensions, support for timed nets was 
implemented later on.   

This paper is organized as follows: Section 2 presents the 
main concepts of Model Checking, GHENeSys nets and 
TCTL. Section 3 presents the SIS Control System Modelling 
proposal. Section 4, presents the application example. Section 
5 presents the conclusion. References are presented thereafter. 

II. MAIN CONCEPTS 

A. Model checking 
The Model Checking technique is composed by the 

following main tasks [12]: 
− Modelling: First the system is converted to a formalism 

accepted by the chosen verification tool. 
− Specification: Before the verification process, it is 

necessary to list the required system properties.  These 
specifications must also be supplied in some kind of 
formalism.  Usually temporal logic is used to specify the 
system behavior.   

− Verification – Usually the verification process is 
performed automatically by the tool, except by the results 
analysis – in case of errors being found.  In this case, the 
tool will supply counterexamples for the verified 
property, helping the designer finding the source of error 
on the system.   

Concurrent systems can frequently interact with their 
environments and usually are operating non-stop, therefore, 
these systems cannot be properly modelled by their input 
output behavior. The first feature of these systems that must be 
taken into account is the state.  A state can be defined as an 
instantaneous description of the system, containing the value 
of every system variable in a single instant.  Also it is 
important to understand how the states change as result of 

some action of the system.  This change can be described as 
the state of the system before and after the some action, this 
pair of states determines a transition of the system [12]. 

In order to represent the behavior of concurrent systems 
several types of used graphs might be used, among them we 
have Kripke structures [12], automata [13], Petri Nets [14] and 
its extensions, as the GHENeSys nets [15].   

There are many different types of concurrent systems 
(synchronous and asynchronous systems, sequential systems, 
parallel process, etc.) and due to this diversity, it is necessary 
to adopt unifying formalism in which these systems can be 
represented regardless of its type. For such representations 
will be used first order logic formulas, which are able to 
represent a great variety of systems [12]. 

In order to write specifications to describe the properties of 
a concurrent system it is necessary to define a set of atomic 
propositions .  Such propositions have the form  where 

 and , an atomic proposition  is said to be 
true in a state  if [12]. 

Temporal logic was proved to be very useful for specifying 
concurrent systems due to its capacity to describe the ordering 
of events without introducing time explicitly, and thanks to 
this feature, it was possible to develop completely automated 
verification algorithms. 

B. Timed Computation Tree Logic (TCTL) 
TCTL [16] was proposed as an extension of the CTL 

(Computation Tree Logic) proposed in [12], for the 
interpretation of temporal formulas over computational trees 
for systems modelled by temporized graphs. TCTL can be 
defined semantically related to a structure , 
where  is the set of states,  the labelling function 
which labels each state with the set of atomic prepositions that 
hold on this state and  the mapping that assigns for each  
a set of -paths through  that obey the closure properties 
[16].  

The formula  of TCTL can be inductively defined as [16]:  

, where  and 
. 

TCTL formulas are composed of path quantifiers and 
temporal operators.  There are two path quantifiers: 
−  (for all computation paths) 
−  (for some computation path) 

Quantifiers are used to specify if from some state, if all 
paths or just some paths must have some propriety.  Temporal 
operators are used to describe the properties of a path 
belonging to some computational tree and were defined by 
adding timing limitations to the classical CTL operators [16]: 
−  (  must hold eventually in some 

state of the computational path for  time units); 
−  (  must hold in all states of the computational 

path for   time units); 
−  (  must hold in some state and  must 

hod in all previous states of the computational path for 
 time units). 
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Where  may represent any of the following binary 
operators .  It is important to note that TCTL, as 
opposed to CTL, does not defines the temporal operator that 
requires that some property must hold on the next state, 
because as the time is considered dense, by definition, there is 
not only one next state [16]. 

Given a TCTL structure  and a state , a 
TCTL formula  holds  if [16]: 
−  if  
− ; 
−  if  or ; 
−  if for some , for some , 

, and for all , . 
−  if for each , for some , 

, and for all , . 

C. GHENeSys environment 
A SIS control system can be seen as an event driven system 

and presents functional characteristics as asynchronism, 
possibility of reset, parallelism, concurrence, etc., thus this 
class of system can be classified as a discrete event system 
(DES), and thus be modelled through Petri Nets [14] [17] and 
its extensions. 

The GHENeSys environment was developed as an extended 
Petri net with object orientation and abstraction mechanisms 
defined through hierarchy concepts, which are included as 
well as synthesis mechanisms that are implemented through a 
structured approach supported by the encapsulation introduced 
by the use of objects [15]. 

The GHENeSys environment is being developed with the 
goal of representing, in a unified way, classical Petri Nets, its 
extensions defined on the ISO/IEC 15909 standard, as well as 
High Level Petri Nets. The GHENeSys environment is 
composed of the following basic modules.  The GHENeSys 
nets, the Editor tool, the simulation module and the 
verification tool [18]. 

The GHENeSys environment implements also several 
concepts to aid the modeling process, such as: Pseudoboxes 
that allow the modelling of the exchange of information 
between different parts of the system; Hierarchy that allows 
the encapsulation of subnets without losing any properties by 
using macro elements; The representation of non-deterministic 
time durations, where a set of time intervals can be defined for 
each transition. 

The GHENeSys net is the tuple , 
where: 
−  is the set of places, which can be boxes or 

pseudoboxes; 
−  are the activities, or active elements; 
−  is the flux relation; 
−  is the capacity function; 
−  is the function that identify the 

macro elements or the hierarchy; 
−  is the set of initial 

marks; 
−  is the function that maps 

the dense time intervals for each element.  
The set of markings is the pair  with , defining 

which place each token can be found and  defining for how 
long this token will remain in place.  The time measurement is 
globally synced and updated after each transition. 

The GHENeSys verification tool performs the formal 
verification of real time concurrent systems modelled as 
GHENeSys net through Model Checking [12] techniques. The 
space state is constructed using the enumerative approach 
based on the state class [19] concept. The tool has options to 
build SCG, SSCG and CSCG state graph types.  Checked 
properties are specified through TCTL [20]. 

The GHENeSys environment will be used in this work due 
to several reasons: (i) Due characteristics of the SIS, the 
amount of checked properties can be very large, so it might be 
desirable that the space state is generated through the 
enumerative approach instead of being generated “on the fly” 
several times.  As the space state generation is done in 
exponential space and time, and the verification of a property 
is performed in polynomial time, if the space state is already 
constructed.  (ii) The use of the dense time approach, as 
several SIS properties are time dependent. (iii) PNML [21] is 
implemented as the default transfer format, thanks to that, the 
interchange of information between the GHENeSys tools is 
possible, as well as with external tools that support the 
standardized format.  (iv) The environment allows that all 
modelling and verification tanks to be performed without the 
need of external modules or tools. (v) The space state 
generation and the specification of the tested properties are 
done on the same tool. 

D. Requirements for safety control programs 
According to [9] and [22], safety control programs must be 

developed according to the development cycle proposed by 
the IEC 61511 standard as shown on Fig. 1and using 
modularity concepts. 

 
Fig. 1. Safety program development cycle or "V-model" 

The development cycle is the combination of several phases 
ranging from the requirements analysis to the formal 
verification of the entire control program. The development 
phases, located on the left, also include steps related with the 
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description of the operation of each SIS module, the choice of 
methods and tools to aid the development, the development of 
the control program and its modules integration and the 
control code development.  The verification phases, located on 
the right, include the formal verification of the modules and 
their integration and the final tests of the control program and 
hardware integration. 

III. SIS CONTROL PROGRAM MODELING 
The initial step towards the proposed framework has 

already been done on the previous section. There, the 
GHENeSys environment was chosen as the modelling and 
verification tool, as well as the choice was justified as required 
by the standard as part of the second phase of the development 
cycle. 

Through the concepts of modularity, we can break the SIS 
control program in two parts. The prevention module is 
responsible to detect dangerous events represented as critical 
faults and deploy the suitable treatment to degenerate the 
system leading it to a safe state.  The mitigation module is 
responsible to detect the effects of a fault not being treated 
correctly – or even not being detected by the prevention 
module – and deploy the suitable treatment to degenerate the 
system and to extinguish the effects before they disseminate to 
other parts of the plant.  The definition of the main control 
program modules and thus the high level control program 
architecture are the second part of the second phase of the 
development cycle. 

The development of the framework will be performed 
according to the Model Based Design (MbD) approach [3]. 
Although this approach is not referred in the IEC 61511 
standard, as according to the standard, all control programs are 
directly developed in an implementation language. The 
standard requires that a final validation shall be carried out by 
the end of the development cycle, and modeling is one of the 
recommended tools for validation.  Thus by adopting the 
MbD, the framework will be not only complying with the 
standard but also improving the modularity of the SIS control 
programs. 

The third and fourth phases of the development cycle are 
related with de control program development. On these phases 
must be chosen methodologies for the development of the 
prevention and mitigation modules.  These methodologies 
must be based on formal models and must have been proposed 
according the requirements of the IEC 61508 and IEC 61511 
standards.  

The prevention module development methodology must 
first be able to define which faults the SIS will treat.  This 
definition can be made through HAZOP reports, cause-effect 
matrix or other applicable technique.  With knowledge of the 
faults, formal methods to discover the causal relations leading 
to each fault, that is, how – by which sensors – each fault can 
be detected must be presented.  The methodology then must be 
able to propose actions to deal with each fault, through the 
actuation of some component – such as control valves – and/or 
the shutdown of an endangered component.  

Now a mitigation module development methodology must 

be chosen. The same methodology as used on prevention can 
be adopted; as well as other methodology can be adopted, as 
long as the same criteria – as described on the previous 
paragraph – are used.  

As opposite as the prevention activity, the mitigation 
activity does not need to define the treated faults through 
documents or reports. The mitigation activity shall treat the 
prevention activity faults, that is, the system will mitigate the 
consequences of the prevention system not being able to lead 
the plant or process to a safe state. 

The sixth and seventh phases of the development cycle are 
related with the formal verification of the models. Due to the 
Model Based approach, the verifications are performed on the 
control program models and not on the control code. All 
properties specified no natural language shall be translated to 
TCTL according to the patterns proposed in [23]. 

IV. APPLICATION EXAMPLE 
Now we will present a simple application example of the 

development of a prevention SIS control program according 
with the IEC 61511 phases already covered by the presented 
framework.  We will begin the application example by 
choosing the methodology to develop the prevention SIS 
module, then the methodology will be applied and the 
resulting control program model will be verified. 

The systematic proposed in [24] was chosen. Briefly, the 
faults that will be treated by the prevention SIS are extracted 
from the HAZOP report.  The detection models are generated 
from cause-effect matrixes, where those matrixes are 
converted on Bayesian Networks, which are finally converted 
on Petri Nets.  The treatment models, that is, the actuators 
related with each treated fault are generated from the HAZOP 
report.  

The systematic was then applied to a flexible manufacturing 
system prototype.  This prototype is composed by three 
manufacture cells: feeder, inspection and assembly.  The cells 
are connected by a conveyor belt transportation system. On 
this example, the prevention SIS control system was 
developed for the assembly cell. This cell is composed of a 
three axis manipulator robot [24]. 

 
Fig. 2. Cause-effect Matrix "X Axis Movement Fault" 
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The first step of the systematic was the construction of the 
cause-effect matrix together with the definition of which fault 
will be treated by the SIS.  On Fig. 2 is displayed the cause-
effect matrix for 15 cases of “X axis movement fault” on the 
manipulator robot.  For each case the combination of the four 
sensors that can detect this type of fault is presented. 

On the next step, the data Fig. 2was inputted into the proper 
algorithms for construction of the Bayesian Network.  The 
resulting Bayesian Network for the diagnostic model was then 
converted on the GHENeSys net presented on Fig. 4 .The 
grayed places displayed on the models are pseudo-boxes. 
These boxes carry the marking information of their master 
elements.  The master element can be identified by the name 
of each pseudo-box. 

 
Fig. 3. GHENeSys net coordination model (left) and treatment model 

(right) 

On the final step, the Safety Instrumented Function (SIF) 
for the manipulator robot “X” axis is determined based on the 
risk analysis HAZOP, and then the SIF treatment and 
coordination models were constructed as displayedFig. 3.The 
function of each transition and place used on the treatment and 
coordination models is explained on Fig. 5. 

 
Fig. 4. Diagnostic model for “X axis movement fault” 

A spurious events filter was implemented on the 
coordination model. This filter prevents the activation of the 
treatment model during a preset time, thus avoiding the 
degeneration of the plant and the costs associated with 
restating the plant in case of spurious readings from some 
sensor. 

 
Fig. 5. Models elements descriptions 

Currently there is no template or standard to determine a set 
of the system properties to be tested, thus, these properties 
usually are chosen by the control engineers based on previous 
knowledge and expertise [3] . 

Table I. Checked Properties 

1 

If any of the sensors B9.2, S9.1, S9.2 or 
X_Encoder_Fail are trigged for longer than the pre-set 

time the treatment model is called. 

 

2 

The motor remain turned off until no sensor is 
detecting the fault  anymore 

 

3 

Motors are not turned off until a fault is detected by the 
sensors 

 
 

Thus, we propose do extract the basic properties from the 
SIFs descriptions, through that we have the main properties 
that the system was designed to fulfil.  Besides the properties 
the system must fulfil, as we are working with safety systems, 
it is also imperative to check if the system reaches undesirable 
– or unsafe – states.  So we have the following natural 
language properties and their respective translated TCTL 
propositions onTable I. 

The verification tool displays the results in a colored square 
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besides the formula: (i) green if the formula holds, or (ii), red 
if the formula does not hold.  On Fig. 6all tested formulas are 
presented with their verification results on a extract of the 
verification tool output window.  All formulas were verified 
with satisfactory results. 

 
Fig. 6. TCTL Propositions and verification results 

V. CONCLUSIONS 
In this work, the first steps towards a framework for 

modeling and verifying SIS control programs were presented,  
the framework is based on the safety software development 
cycle from the IEC 61511 standard associated with the model 
based design approach. As demanded by the IEC 61511 
standard, tools and methodologies to comply with some 
phases of development cycle were chosen, the initial high 
level control architecture was proposed, guidelines to choose 
the methodologies for developing the prevention and 
mitigation activities were also proposed.  Also guidelines for 
TCTL propositions mapping from natural language properties 
– which we consider one of the most difficult tasks when 
using model checking techniques – were chosen.  

SIS control program, as the one developed on this work, are 
critical to the systems they protect, as they responsible for the 
identification and treatment of critical faults.  These faults, if 
not treated might lead to severe accidents and the loss of 
human lives. Frameworks as the one introduced on the present 
work, became crucial in order to enable these systems to be 
correctly interpreted and developed allowing the SIS to 
present a lesser probability of faults. 

The next steps on the development of the framework might  
include more detailed modules architecture and functionalities, 
as well as systematics for the refinement of the high level 
modules; Methodologies for automatic isomorphic 
transformation of the models in IEC 61131-3 code; 
Methodologies for the integration of the prevention and 
mitigation modules, as well as modules for the treatment of 
several faults; And finally, systematics to verify the integrated 
SIS models and the study the relation between its modules. 
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