

Keywords—GHENeSys nets, Model Checking, Safety
Instrumented System, Verification.

Abstract—Due to the high complexity of the actual Productive

Systems, the current industrial standards, and the possible negative
impacts on the human being, on the environment and on equipment in
case of faults, the development of control solutions that are both
secure and stable – as some systems have to operate nonstop – is
much demanded. In this context, the development of safety control
systems which simultaneously present high reliability and availability
is required. The concepts of SIS, according to experts, may be one
solution to these problems. Due the complexity of these systems,
project mistakes are expected during their development and thus,
validation and verification processes became an imperative – as well
as a normative requirement – before the actual deployment of the
control software on site. One of the most outstanding system
verification techniques is the Model Checking, which performs an
exhaustive search on the state space of an event driven system and
checks some specific properties written in temporal logic. The
GHENeSys environment will be used as computational tool, as it
provides a complete solution for modelling and verifying systems
based on the GHENeSys network. The proposed methodology will
then be applied to the development of a SIS control system to be
implemented on a flexible manufacture system, which simulates
assembly and handling of parts.

I. INTRODUCTION
he growing demand on cost and quality of products and
services, the highly competitive market with several
players, the increasing hardware storage capacity,

processing power and networks speeds, and above all, the
concern with the environment, the foundation of all current
suitability policies caused an implementation of more complex
control systems in the most diverse areas, from the production
of consumer products to services [1].

The increasing implementation of processes automation,
mandatory for costs reductions and quality improvements, key
factors to the survival of a company in a highly competitive
market, induced an ever increasing complexity of the control
systems required for these systems [2] [3]

The authors would like to thank the Brazilian governmental agencies

CNPq, FAPESP, and CAPES for their financial support to this work.
All authors are with Polytechnic School – Department of Mechatronics

Engineering and Mechanical Systems - University of São Paulo - São Paulo,
Brazil (phone: +55 11 3091-5337 ; e-mail: rferrarezi@usp.br,
reinaldo.squillante@usp.br, jeferson.souza@usp.br, diolinos@usp.br,
reinaldo@usp.br, pemiyagi@usp.br, lamoscat@usp.br).

Being the control software increasingly complex, and the
quality requirements more and more severe, there is a demand
for more detailed and concise specification as well as a better
control of the development process. It is also required a deeper
understanding of the system to be controlled, including details
regarding all relevant sub-systems and furthermore, how
several system interacts and communicates with each other
and with the environment, as the behavior of an
interconnected system depends not only of its internal
variables, but also of external events originated from the
surrounds of the system [4] [5].

Additionally, any industrial system, as modern and
innovative as it can be, still may pose serious risks to
equipment, to operators and to the environment, in the event
of a fault failing to be diagnosed and treated correctly [6].
Although many studies have been presented for diagnosis and
treatment of faults, accidents still occur. The main problem is
that there is no zero risk in process industries since: (i)
physical devices do not have zero risk of fault, (ii) human
operators do not have zero risk of error and (iii) there is no
computational system that can predict all the reachable states
by the system [7].

According to experts, the concepts of safety instrumented
systems (SIS), is one solution to these types of issues. They
strongly recommend the implementation of layers of risk
reduction based on control systems organized hierarchically in
order to manage risks by either preventing or mitigating faults,
bringing the process to a safe state. In this sense, some safety
standards such as IEC 61508 [8], IEC 61511 [9] among others,
guide different activities related with a SIS Safety Life Cycle
(SLC), such as design, installation, operation, maintenance,
tests and others [10][11].

On this context, the processes of understanding, specifying,
modelling and validating these systems became a highly
complex task, resulting in great hardships on their
development. Due all this, project mistakes are associated with
the development of these systems and thus, validation and
verification processes became an imperative before the actual
deployment of the control software on the actual plant [3] [4].
Besides the obvious necessity of verifying and validating
critical systems, these activities are required by the safety
standard IEC 61511 [9] as part of the safety program
development cycle, also known as “V-model.

Model Checking is a verification technique for finite state
concurrent systems, and thanks to this restriction, the

Formal verification of safety control system
based on GHENESYS NET

Rodrigo Cesar Ferrarezi, Reinaldo Squillante Júnior, Jeferson A. L. Souza, Diolino J. Dos Santos
Filho, José Reinaldo Silva, Paulo Eigi Miyagi, Lucas Antonio Moscato

T

Mathematics and Computers in Science and Industry

ISBN: 978-1-61804-247-7 51

mailto:rferrarezi@usp.br�
mailto:reinaldo.squillante@usp.br�
mailto:jeferson.souza@usp.br�
mailto:diolinos@usp.br�
mailto:reinaldo@usp.br�
mailto:pemiyagi@usp.br�
mailto:lamoscat@usp.br�

verification processes can be performed semi-automatically,
being human interaction only needed for the analysis of the
results. The basic procedure performs an exhaustive search of
the space state of an event driven system, verifying properties
specified from propositions described using some temporal
logic. Given enough time and computational power, the
procedure will always finish with a positive or negative result,
in case of a negative result; a counterexample is given by the
system, helping the designer to find the source of error [12].

In this work we propose the first steps towards the
development of a framework for the modelling and formal
verification of SIS control programs based on the IEC 61511
standard. On the framework, we expect to propose methods,
techniques and systematics to comply with all phases of the
“V model” according to the IEC 51511 standard. With the
complete framework we expect to aid the control engineers to
develop SIS control programs in a structured and well defined
way as well as fulfilling the requirements of the IEC 51511
standard.

The GHENeSys environment will be used as computational
tool modelling and verification processes, the environment is a
proposal of the DesignLab from USP and was originally
designed as unified approach to cover several types of Petri
Nets as well as its extensions, support for timed nets was
implemented later on.

This paper is organized as follows: Section 2 presents the
main concepts of Model Checking, GHENeSys nets and
TCTL. Section 3 presents the SIS Control System Modelling
proposal. Section 4, presents the application example. Section
5 presents the conclusion. References are presented thereafter.

II. MAIN CONCEPTS

A. Model checking
The Model Checking technique is composed by the

following main tasks [12]:
− Modelling: First the system is converted to a formalism

accepted by the chosen verification tool.
− Specification: Before the verification process, it is

necessary to list the required system properties. These
specifications must also be supplied in some kind of
formalism. Usually temporal logic is used to specify the
system behavior.

− Verification – Usually the verification process is
performed automatically by the tool, except by the results
analysis – in case of errors being found. In this case, the
tool will supply counterexamples for the verified
property, helping the designer finding the source of error
on the system.

Concurrent systems can frequently interact with their
environments and usually are operating non-stop, therefore,
these systems cannot be properly modelled by their input
output behavior. The first feature of these systems that must be
taken into account is the state. A state can be defined as an
instantaneous description of the system, containing the value
of every system variable in a single instant. Also it is
important to understand how the states change as result of

some action of the system. This change can be described as
the state of the system before and after the some action, this
pair of states determines a transition of the system [12].

In order to represent the behavior of concurrent systems
several types of used graphs might be used, among them we
have Kripke structures [12], automata [13], Petri Nets [14] and
its extensions, as the GHENeSys nets [15].

There are many different types of concurrent systems
(synchronous and asynchronous systems, sequential systems,
parallel process, etc.) and due to this diversity, it is necessary
to adopt unifying formalism in which these systems can be
represented regardless of its type. For such representations
will be used first order logic formulas, which are able to
represent a great variety of systems [12].

In order to write specifications to describe the properties of
a concurrent system it is necessary to define a set of atomic
propositions . Such propositions have the form where

 and , an atomic proposition is said to be
true in a state if [12].

Temporal logic was proved to be very useful for specifying
concurrent systems due to its capacity to describe the ordering
of events without introducing time explicitly, and thanks to
this feature, it was possible to develop completely automated
verification algorithms.

B. Timed Computation Tree Logic (TCTL)
TCTL [16] was proposed as an extension of the CTL

(Computation Tree Logic) proposed in [12], for the
interpretation of temporal formulas over computational trees
for systems modelled by temporized graphs. TCTL can be
defined semantically related to a structure ,
where is the set of states, the labelling function
which labels each state with the set of atomic prepositions that
hold on this state and the mapping that assigns for each
a set of -paths through that obey the closure properties
[16].

The formula of TCTL can be inductively defined as [16]:

, where and
.

TCTL formulas are composed of path quantifiers and
temporal operators. There are two path quantifiers:
− (for all computation paths)
− (for some computation path)

Quantifiers are used to specify if from some state, if all
paths or just some paths must have some propriety. Temporal
operators are used to describe the properties of a path
belonging to some computational tree and were defined by
adding timing limitations to the classical CTL operators [16]:
− (must hold eventually in some

state of the computational path for time units);
− (must hold in all states of the computational

path for time units);
− (must hold in some state and must

hod in all previous states of the computational path for
 time units).

Mathematics and Computers in Science and Industry

ISBN: 978-1-61804-247-7 52

Where may represent any of the following binary
operators . It is important to note that TCTL, as
opposed to CTL, does not defines the temporal operator that
requires that some property must hold on the next state,
because as the time is considered dense, by definition, there is
not only one next state [16].

Given a TCTL structure and a state , a
TCTL formula holds if [16]:
− if
− ;
− if or ;
− if for some , for some ,

, and for all , .
− if for each , for some ,

, and for all , .

C. GHENeSys environment
A SIS control system can be seen as an event driven system

and presents functional characteristics as asynchronism,
possibility of reset, parallelism, concurrence, etc., thus this
class of system can be classified as a discrete event system
(DES), and thus be modelled through Petri Nets [14] [17] and
its extensions.

The GHENeSys environment was developed as an extended
Petri net with object orientation and abstraction mechanisms
defined through hierarchy concepts, which are included as
well as synthesis mechanisms that are implemented through a
structured approach supported by the encapsulation introduced
by the use of objects [15].

The GHENeSys environment is being developed with the
goal of representing, in a unified way, classical Petri Nets, its
extensions defined on the ISO/IEC 15909 standard, as well as
High Level Petri Nets. The GHENeSys environment is
composed of the following basic modules. The GHENeSys
nets, the Editor tool, the simulation module and the
verification tool [18].

The GHENeSys environment implements also several
concepts to aid the modeling process, such as: Pseudoboxes
that allow the modelling of the exchange of information
between different parts of the system; Hierarchy that allows
the encapsulation of subnets without losing any properties by
using macro elements; The representation of non-deterministic
time durations, where a set of time intervals can be defined for
each transition.

The GHENeSys net is the tuple ,
where:
− is the set of places, which can be boxes or

pseudoboxes;
− are the activities, or active elements;
− is the flux relation;
− is the capacity function;
− is the function that identify the

macro elements or the hierarchy;
− is the set of initial

marks;
− is the function that maps

the dense time intervals for each element.
The set of markings is the pair with , defining

which place each token can be found and defining for how
long this token will remain in place. The time measurement is
globally synced and updated after each transition.

The GHENeSys verification tool performs the formal
verification of real time concurrent systems modelled as
GHENeSys net through Model Checking [12] techniques. The
space state is constructed using the enumerative approach
based on the state class [19] concept. The tool has options to
build SCG, SSCG and CSCG state graph types. Checked
properties are specified through TCTL [20].

The GHENeSys environment will be used in this work due
to several reasons: (i) Due characteristics of the SIS, the
amount of checked properties can be very large, so it might be
desirable that the space state is generated through the
enumerative approach instead of being generated “on the fly”
several times. As the space state generation is done in
exponential space and time, and the verification of a property
is performed in polynomial time, if the space state is already
constructed. (ii) The use of the dense time approach, as
several SIS properties are time dependent. (iii) PNML [21] is
implemented as the default transfer format, thanks to that, the
interchange of information between the GHENeSys tools is
possible, as well as with external tools that support the
standardized format. (iv) The environment allows that all
modelling and verification tanks to be performed without the
need of external modules or tools. (v) The space state
generation and the specification of the tested properties are
done on the same tool.

D. Requirements for safety control programs
According to [9] and [22], safety control programs must be

developed according to the development cycle proposed by
the IEC 61511 standard as shown on Fig. 1and using
modularity concepts.

Fig. 1. Safety program development cycle or "V-model"

The development cycle is the combination of several phases
ranging from the requirements analysis to the formal
verification of the entire control program. The development
phases, located on the left, also include steps related with the

Mathematics and Computers in Science and Industry

ISBN: 978-1-61804-247-7 53

description of the operation of each SIS module, the choice of
methods and tools to aid the development, the development of
the control program and its modules integration and the
control code development. The verification phases, located on
the right, include the formal verification of the modules and
their integration and the final tests of the control program and
hardware integration.

III. SIS CONTROL PROGRAM MODELING
The initial step towards the proposed framework has

already been done on the previous section. There, the
GHENeSys environment was chosen as the modelling and
verification tool, as well as the choice was justified as required
by the standard as part of the second phase of the development
cycle.

Through the concepts of modularity, we can break the SIS
control program in two parts. The prevention module is
responsible to detect dangerous events represented as critical
faults and deploy the suitable treatment to degenerate the
system leading it to a safe state. The mitigation module is
responsible to detect the effects of a fault not being treated
correctly – or even not being detected by the prevention
module – and deploy the suitable treatment to degenerate the
system and to extinguish the effects before they disseminate to
other parts of the plant. The definition of the main control
program modules and thus the high level control program
architecture are the second part of the second phase of the
development cycle.

The development of the framework will be performed
according to the Model Based Design (MbD) approach [3].
Although this approach is not referred in the IEC 61511
standard, as according to the standard, all control programs are
directly developed in an implementation language. The
standard requires that a final validation shall be carried out by
the end of the development cycle, and modeling is one of the
recommended tools for validation. Thus by adopting the
MbD, the framework will be not only complying with the
standard but also improving the modularity of the SIS control
programs.

The third and fourth phases of the development cycle are
related with de control program development. On these phases
must be chosen methodologies for the development of the
prevention and mitigation modules. These methodologies
must be based on formal models and must have been proposed
according the requirements of the IEC 61508 and IEC 61511
standards.

The prevention module development methodology must
first be able to define which faults the SIS will treat. This
definition can be made through HAZOP reports, cause-effect
matrix or other applicable technique. With knowledge of the
faults, formal methods to discover the causal relations leading
to each fault, that is, how – by which sensors – each fault can
be detected must be presented. The methodology then must be
able to propose actions to deal with each fault, through the
actuation of some component – such as control valves – and/or
the shutdown of an endangered component.

Now a mitigation module development methodology must

be chosen. The same methodology as used on prevention can
be adopted; as well as other methodology can be adopted, as
long as the same criteria – as described on the previous
paragraph – are used.

As opposite as the prevention activity, the mitigation
activity does not need to define the treated faults through
documents or reports. The mitigation activity shall treat the
prevention activity faults, that is, the system will mitigate the
consequences of the prevention system not being able to lead
the plant or process to a safe state.

The sixth and seventh phases of the development cycle are
related with the formal verification of the models. Due to the
Model Based approach, the verifications are performed on the
control program models and not on the control code. All
properties specified no natural language shall be translated to
TCTL according to the patterns proposed in [23].

IV. APPLICATION EXAMPLE
Now we will present a simple application example of the

development of a prevention SIS control program according
with the IEC 61511 phases already covered by the presented
framework. We will begin the application example by
choosing the methodology to develop the prevention SIS
module, then the methodology will be applied and the
resulting control program model will be verified.

The systematic proposed in [24] was chosen. Briefly, the
faults that will be treated by the prevention SIS are extracted
from the HAZOP report. The detection models are generated
from cause-effect matrixes, where those matrixes are
converted on Bayesian Networks, which are finally converted
on Petri Nets. The treatment models, that is, the actuators
related with each treated fault are generated from the HAZOP
report.

The systematic was then applied to a flexible manufacturing
system prototype. This prototype is composed by three
manufacture cells: feeder, inspection and assembly. The cells
are connected by a conveyor belt transportation system. On
this example, the prevention SIS control system was
developed for the assembly cell. This cell is composed of a
three axis manipulator robot [24].

Fig. 2. Cause-effect Matrix "X Axis Movement Fault"

Mathematics and Computers in Science and Industry

ISBN: 978-1-61804-247-7 54

The first step of the systematic was the construction of the
cause-effect matrix together with the definition of which fault
will be treated by the SIS. On Fig. 2 is displayed the cause-
effect matrix for 15 cases of “X axis movement fault” on the
manipulator robot. For each case the combination of the four
sensors that can detect this type of fault is presented.

On the next step, the data Fig. 2was inputted into the proper
algorithms for construction of the Bayesian Network. The
resulting Bayesian Network for the diagnostic model was then
converted on the GHENeSys net presented on Fig. 4 .The
grayed places displayed on the models are pseudo-boxes.
These boxes carry the marking information of their master
elements. The master element can be identified by the name
of each pseudo-box.

Fig. 3. GHENeSys net coordination model (left) and treatment model

(right)

On the final step, the Safety Instrumented Function (SIF)
for the manipulator robot “X” axis is determined based on the
risk analysis HAZOP, and then the SIF treatment and
coordination models were constructed as displayedFig. 3.The
function of each transition and place used on the treatment and
coordination models is explained on Fig. 5.

Fig. 4. Diagnostic model for “X axis movement fault”

A spurious events filter was implemented on the
coordination model. This filter prevents the activation of the
treatment model during a preset time, thus avoiding the
degeneration of the plant and the costs associated with
restating the plant in case of spurious readings from some
sensor.

Fig. 5. Models elements descriptions

Currently there is no template or standard to determine a set
of the system properties to be tested, thus, these properties
usually are chosen by the control engineers based on previous
knowledge and expertise [3] .

Table I. Checked Properties

1

If any of the sensors B9.2, S9.1, S9.2 or
X_Encoder_Fail are trigged for longer than the pre-set

time the treatment model is called.

2

The motor remain turned off until no sensor is
detecting the fault anymore

3

Motors are not turned off until a fault is detected by the
sensors

Thus, we propose do extract the basic properties from the
SIFs descriptions, through that we have the main properties
that the system was designed to fulfil. Besides the properties
the system must fulfil, as we are working with safety systems,
it is also imperative to check if the system reaches undesirable
– or unsafe – states. So we have the following natural
language properties and their respective translated TCTL
propositions onTable I.

The verification tool displays the results in a colored square

Mathematics and Computers in Science and Industry

ISBN: 978-1-61804-247-7 55

besides the formula: (i) green if the formula holds, or (ii), red
if the formula does not hold. On Fig. 6all tested formulas are
presented with their verification results on a extract of the
verification tool output window. All formulas were verified
with satisfactory results.

Fig. 6. TCTL Propositions and verification results

V. CONCLUSIONS
In this work, the first steps towards a framework for

modeling and verifying SIS control programs were presented,
the framework is based on the safety software development
cycle from the IEC 61511 standard associated with the model
based design approach. As demanded by the IEC 61511
standard, tools and methodologies to comply with some
phases of development cycle were chosen, the initial high
level control architecture was proposed, guidelines to choose
the methodologies for developing the prevention and
mitigation activities were also proposed. Also guidelines for
TCTL propositions mapping from natural language properties
– which we consider one of the most difficult tasks when
using model checking techniques – were chosen.

SIS control program, as the one developed on this work, are
critical to the systems they protect, as they responsible for the
identification and treatment of critical faults. These faults, if
not treated might lead to severe accidents and the loss of
human lives. Frameworks as the one introduced on the present
work, became crucial in order to enable these systems to be
correctly interpreted and developed allowing the SIS to
present a lesser probability of faults.

The next steps on the development of the framework might
include more detailed modules architecture and functionalities,
as well as systematics for the refinement of the high level
modules; Methodologies for automatic isomorphic
transformation of the models in IEC 61131-3 code;
Methodologies for the integration of the prevention and
mitigation modules, as well as modules for the treatment of
several faults; And finally, systematics to verify the integrated
SIS models and the study the relation between its modules.

REFERENCES
[1] M. Bani Younis and G. Frey, "Formalization of Existing PLC Programs:

A survey," , Kaiserslautern, 2003.
[2] Leonardo Rodrigues Sampaio, Validação Visual de Programas Ladder

Baseada em Modelos. Campina Grande: Universidade Federal de
Campina Grande, 2011.

[3] Mauro Mazzolini, Alessandro Brusaferri, and Emanuele Carpanzano,
"An Integrated Framework for Model-based Design and Verification of
discrete Automation Solutions," in Proceedings 2011 9th IEEE
International Conference on Industrial Informatics, Milan, 2011, pp.
545-550.

[4] Michel Diaz, Petri Nets - Fundamental Models, Verification and
Applications. London: John Wiley & Sons, 2009.

[5] Peter Hoffmann, Reimar Schumann, Talal M.A Maksoud, and Giuliano

C. Premier, "Virtual Commissioning of Manufacturing Systems," in 24th
European Conference on Modelling and Simulation, Kuala Lumpur,
Malaysia, 2010, pp. 175-181.

[6] M. Sallak, C. Simon, and J.-F. Aubry, "A Fuzzy Probabilistic Approach
for Determining Safety Integrity Level," IEEE Transactions on Fuzzy
Systems, vol. 16, no. 1, pp. 239-248, 2008.

[7] Reinaldo Squillante Jr., Diolino J. Santos Filho, Jeferson A. L. de Souza,
Paulo E. Miyagi, and Fabrício Junqueira, "Safety in Supervisory Control
for Critical Systems," in Technological Innovation for the Internet of
Things, Costa de Caparica, 2012, pp. 261-270.

[8] IEC, "IEC 61508 - Functional safety of
electrical/electronic/programmable electronic safety-related systems,"
International Electrotechnical Commission, Geneva, Switzerland, 2010.

[9] IEC, "IEC 61511 - Safety instrumented systems for the process industry
sector," International Electrotechnical Commission, Geneva, 2003.

[10] Mary Ann Lundteigen and Marvin Rausand, "Architectural constraints in
IEC 61508: Do they have the intended effect?," Reliability Engineering
& System Safety, vol. 94, no. 2, pp. 520–525, 2009.

[11] Laihua Fang and Lijun Wei and Ji Liu Zongzhi Wu, "Design and
Development of Safety Instrumented System," in Proceedings of the
IEEE International Conference on Automation and Logistics, Qingdao,
2008, pp. 2685 - 2690.

[12] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled, Model
Cheking, 1st ed. Cambridge: MIT Press, 1999.

[13] Rajeev Alur and David L. Dill, "A theory of timed automata,"
Theoretical Computer Science, vol. 126, no. 2, pp. 183-235, 1994.

[14] T. Murata, "Petri nets: Properties, analysis and applications,"
Proceedings of IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[15] Pedro M. Gonzalez del Foyo and José Reinaldo Silva, "Towards a
unified view of Petri nets and object oriented modeling," in In 17th
International Congress in Mechanical Engineering, São Paulo, 2003, pp.
518-524.

[16] Rajeev Alur, Costas Courcoubetis, and David Dill, "Model-Checking in
Dense Real-time," Information and Computation, vol. 104, no. 1, pp. 2-
34, 1993.

[17] Richard Zurawski and MengChu Zhou , "Petri nets and industrial
applications: a tutorial," IEEE Transactions on Industrial Electronics,
vol. 41, no. 6, pp. 567–583, 1994.

[18] Pedro M. G. del Foyo, A. S. P. José Miralles, and José Reinaldo Silva,
"UM VERIFICADOR FORMAL EFICIENTE PARA SISTEMAS DE
TEMPO REAL," in X SBAI – Simpósio Brasileiro de Automação
Inteligente, vol. X, São João del-Rei, 2011, pp. 1220-1225.

[19] Bernard Berthomieu and Miguel Menasche, "An Enumerative Approach
For Analyzing Time Petri Nets," in Proceedings IFIP, Paris, 1983, pp.
41-46.

[20] Rajeev Alur, Costas A. Courcoubetis, and David L. Dill, "Model-
checking for real-time systems," in Proceedings of the Fifth Annual
IEEE Symposium on Logic in Computer Science, Philadelphia, 1990, pp.
414-425.

[21] ISO/IEC, "Software and Systems Engineering - High-level Petri Nets,
Part 2: Transfer Format, International Standard WD ISO/IEC 15909. Wd
version 0.9.0," 2005.

[22] Alois Mayr, Reinhold Plösch, and Matthias Saft, "Towards an
Operational Safety Standard for Software - Modelling IEC 61508 Part
3," in 18th IEEE International Conference and Workshops on
Engineering of Computer-Based Systems, Las Vegas, 2011, pp. 97-104.

[23] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett, "Property
Specification Patterns for Finite-state Verication," in Proceedings of 2nd
Workshop on Formal Methods in Software Practice, Clearwater Beach,
1998, pp. 7-15.

[24] Reinaldo Squillante Júnior, Diolino Jose Santos Filho, Fabricio
Junqueira, and Paulo Eigi Miyagi, "Development of Control Systems for
Safety Instrumented Systems," IEEE (Revista IEEE America Latina)
Latin America Transactions, vol. 9, no. 4, pp. 451-457, 2011.

Mathematics and Computers in Science and Industry

ISBN: 978-1-61804-247-7 56

