

Abstract—Everyone faces the problems in everyday activities.

They can be of various kinds - personal, business or other. To solve
the problem, it is necessary to find a procedure, process that will
solved it. It is necessary to establish the algorithm. Algorithms can be
found not only in everyday routine activities, e.g. during crossing the
street through the transition, cooking food etc., but also in subjects of
programming. A number of courses of programming at different
schools starts the teaching with algorithm development. The
algorithm development is primarily related with structured paradigm
of programming. On the other hand modern and most widely used is
object-oriented paradigm in programming

Teaching methodology and election of paradigm of programming
always depends on the particular school and taught subjects. The
algorithm development is, for example bases of subjects like graph
theory. The algorithm development has its place in teaching of
programming. The proposal of procedures of problem solution is
closely related to the way of thinking that beginning programmers are
used.

The paper describes algorithmic thinking and analyzes the results
of two teaching methodologies related to algorithm development -
structured and object oriented paradigm versus object oriented
paradigm with regard to algorithmic thinking of students of the
Faculty of Science, University of Hradec Kralove.

Keywords—Algorithm development, algorithm thinking,
structured paradigm of programming, object oriented paradigm of
programming.

I. INTRODUCTION
HE development of new programming languages are often
associated with new paradigms in programming. The

languages of lower level, was replaced by the high-level
languages [1]. The supporters and opponents of two most
widely used paradigms - structured programming and object-
oriented programming discussed the advantages and
disadvantages of both paradigms. Recently, the most widely
used is object-oriented paradigm, which is usually required by
companies in the labor market. A candidate who can use the
object libraries and creates the object program with under the
rules of design patterns, interfaces and inheritance, has great
advantage with comparison of candidate who cannot used it.

Stepan Hubalovsky is assoc. prof. and supervisor of Ondrej Korinek. He

works at University of Hradec Kralove, Department of informatics, Faculty of
Science, Hradec Kralove 500 38, Rokitanskeho 62, Czech republic,
stepan.hubalovsky@uhk.cz.

Ondrej Korinek is Ph.D. student at University of Hradec Kralove,
Department of informatics, Faculty of Science, Hradec Kralove 500 38,
Rokitanskeho 62, Czech republic, ondrej.korinek@uhk.cz.

Creation of extensive application using structured
programming is not possible. In spite of this fact the object-
oriented programming is taught in number of schools in later
phase the programming or in optional subjects. Opponents of
such a methodology (e.g. [2]), often point the fact that the
student completely doesn’t understand the object programming
and often programmed by the previous ingrained habits.
Despite the entirely legitimate objections against the structured
oriented methodologies of teaching of programming, the
introduction to structured oriented programming has their
place. Other commonly used methods of teaching, is algorithm
development and structured programming. At some schools
algorithm development continues by object graph theory [3].
Structured programming is used e.g. in programming of robots
in Lego Mindstorms.

II. ALGORITHM DEVELOPMENT AND PROGRAMMING
Algorithm can be represents in several ways - in the form of

flowcharts, pseudocodes or structure-grams. It always depends
on the teacher, which type of algorithm representation prefer
[4]. Algorithm development is the basis of programming [5].

The first aspect that influences learning of algorithms and
programming is influenced by the form of performed teaching:

• structured form, that teaching is divided into learning
algorithms, structured programming and object-oriented
programming in the end;

• object oriented form, i.e. from the beginning of the
instruction focuses on object-oriented programming,
with the principles of the algorithms are part of this
instruction.

The paper analyzes the results of two teaching

methodologies related to algorithm development based on
structured programming with regard to algorithmic thinking,
so let’s described basic paradigm of structured programming
first.

Structured programming is programming based on the
structure of the program, which comes strictly from the
algorithm flowchart. From the system approach point of view
the algorithm as well as structured program (written in any
structured language - Pascal, C++, VB Script) can be
understood as system, because they have properties of the
system – algorithm interacts with its environment through
inputs and outputs, consists from elements that are affected
by interactions. Another division algorithm to subsystems is

Algorithmic thinking
in paradigms of programming

Stepan Hubalovsky and Ondrej Korinek

T

Recent Advances in Educational Technologies

ISBN: 978-1-61804-322-1 48

possible, from a practical perspective, however unreasonable.
In this context it is necessary to mention what types of

exercises are used for training the algorithm development and
structured programming. The exercises reflect two facts.
Firstly, in the past, early in the courses of programming
(mainly structured programming - Pascal, Basic, etc.) has been
teaching of programming realized by teachers who also taught
mathematics, or had to mathematics very close. Second, math
problems are basically the simplest tasks, can be clearly
described, defined and then developed by algorithm and
rewritten to the program structure. That, however, seems at
first glance a logical and simple, brings disadvantages.
Algorithm development and structured programming explained
by the mathematical tasks usually focus on rewriting the
mathematical equations and formulas to the algorithms
regardless of their complex systems integration with the
exercises from real life. Used tasks are often artificial and
divorced from reality. System and multidisciplinary approach
is missing. Students, who do not have sufficient mathematical
skills, do not understand the task and it can result in resistance
to the algorithm development and subsequently to
programming.

Despite the different representation of algorithm and

different paradigm of programming students should improve
algorithmic thinking.

III. ALGORITHM THINKING
When designing the algorithm the various terms are used

and combine. The terms are related to previous practical
experience and theoretical knowledge of programmer.
Algorithms that programmers solve, in most cases are also
problematic. The algorithmic thinking is important for the
proper design and construction of the algorithm, in which it is
necessary to take into account the time and memory
consumption [9]. The algorithm thinking is also used when
analyzing e.g. the best sorting algorithm of the sequence of
numbers or to verify that designed procedure satisfies all the
properties of the algorithm. Algorithm thinking can be related
to the basic terms that are used in algorithms development.

A. The Forms of Learning in Algorithm Thinking
Among the forms of learning that are related to algorithmic

thinking, will include: deduction, induction, sorting,
comparison, analysis and synthesis [10].

Deduction at algorithmic thinking used e.g. in the design of
algorithms. The algorithm must meet certain rules that are
universal and that has to be applied to build required
algorithm.

Induction at the algorithmic thinking is used in reverse case
than in the previous proposal, e.g. if in the design of a required
algorithm is needed to check the general steps to prove the
procedure is algorithm.

Sorting is in algorithmic thinking used for sorting
algorithms. The sorting algorithm are the basis for teaching of
algorithms. It is always necessary, with the given values in the

sequence to determine, which sorting algorithm is most
appropriate for a given sequence.

Comparing in algorithmic thinking can be understood as the
most important form of algorithm learning. When teaching the
algorithm development, the basis is to propose the most
efficient algorithm that solves the problem. In proposal of the
algorithm, the student has to use comparison thinking skills to
select the most efficient algorithm from several proposed
algorithms that solves the problem.

Analysis and synthesis are one of the most important
intellectual operations that are related together [3]. At the
beginning of the design of the algorithm the analysis of use of
algorithmic structures and elements in the algorithm should be
provided.

IV. RESEARCH OF METHODS OF TEACHING
IN THE SUBJECT OF PROGRAMMING

A. Methodology of the Research
Students at the Faculty of Science Univerzity of Hradec

Králové in the study field Informatics in Education meet with
programming in the first semester of the course Algorithms
and Data Structures (hereinafter ALGDS). The course deals
with basic algorithmic structures, one-dimensional array,
matrixes and algorithms for sorting. The course of ALGDS is
followed by three courses of programming in from the second
up to fourth semesters. Programing language is C#.

The research investigation was carried out in the course of
programming in the academic year 2013/2014. The main goal
of the research was determined the comparison of two methods
of teaching of programming - object-oriented programming
and structured versus object-oriented programming with
respect to algorithmic thinking. Students were randomly
divided evenly into two groups according to the results in
course ALGDS.

One group of students followed the algorithm development
by structured programming in C # programming language with
functions (methods) and based on algorithmic structures. The
students designed structured C# programs based on similar
algorithms, the already developed in course of ALGDS. The
programs included conditions, loops, arrays, matrices. The
structured programming was then followed by object-oriented
programming, where the basic concepts of OOP were
discussed.

The second group of students began immediately after the
algorithm development (after the course ALGDS) with object
oriented programming (without structured programming). In
this group the concept of object oriented programming was
more practiced. The concept of structured programming was
omitted.

Both groups of students passed a midterm exam test with
similar tasks, which consisted of theoretical and practical part.
Practical (programming) part was divided into object and
algorithmic part. To successfully pass the test, students had to
reach in every part at least 60% of correct answer.

Recent Advances in Educational Technologies

ISBN: 978-1-61804-322-1 49

B. Credit Test
The credit test consists form some different tasks. Students

have to correctly designed class first. They initialize one
dimensional array (sequence) by constructor. Algorithm
constructions for one dimensional array create classes in
methods. Methods for correct design of algorithm are focused
to following areas:

• input data to the sequence;
• output data from the sequence;
• calculations and search of value in the sequence;
• shifts the values in the sequence,
• inserting / removing values in the sequence;
• work with multiple sequences.

Students has to fulfill one task from each area and create
algorithm. Class definition, constructors and methods are
separated from algorithmic structures in evaluation of the task.

Sample of credit test:
Create a new project in C # console application In Visual

Studio based and fulfill following assignment.
Create class Sequence for sequences operation (one-

dimensional array) with the following components:

Basic algorithms:
• Constructor - creates private data item of one-

dimensional array type of integers of a given size.
• N - read-only property specifying the length of the

sequence.
• Fill - filled array by numerical series in two different

ways (overloads):
• initial value will be set by input parameter (range

will be from X to N + X).
• input parameter is missing and a series will start

from 1 (up to N).
• WriteRow - writes sequences to row of console (values

are separated by commas).
• Member - returns values of sequence member in position

specified by input parameter.

Algorithm for Calculations and Search:
• Number - determines the number of members whose

value is equal to the value specified as input parameter
and returns this number as output value

Algorithm for shift of values:
• CycleShift - cyclically moves to right the members of the

sequence.

Algorithm for inserting the values:
• Insert - insert into the sequence the member whose value

and position will be determined by input parameter.

Algorithm for work with multiple arrays
• Division – selects all the values of sequence members that

are divisible by the value specified as input parameter
and returns a value of sequence type as output.

In the main part of the program (method Main Class
Program), create instance of the class Sequence and properly
use all implemented methods.

C. The Result of the Research
The research investigated the influence of the different

concepts on increase of algorithmic thinking.
The first credit test was the same for both groups of

students. The test examines practical skills operate with one-
dimensional array - calculations and searches, shifts the values
in the sequence, inserting / removing values and work with
multiple fields.

In the first group of the students (course of ALGDS
followed by course of structured and object-oriented
programming – algorithmic group of student) consist of 9
students participated in the test.

In the second group of the students (course of only OOP –
object oriented group of students) consist of 8 students
participated in the test.

Result of the algorithmic test
To determine whether the median of the result of student

achieved in algorithmic part is the same for the first and
second groups of students the nonparametric Mann-Whitney
test was used.

Calculated P- value is P = 0.030384
with significance level α = 0.05,

so we can reject the null hypothesis that the median of students
results of the algorithmic part between the groups is the same.
Between groups is statistically significant difference. Box plots
diagram of both groups of students is in figure 1.

0 1

taught group

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Th
e

R
es

ul
t i

n
pa

rt
al

go
rit

hm

Fig. 1 Box plot diagram comparing result of algorithmic group of

students with object oriented group of students in
algorithmic test.

The results show that the first algorithmic group of students
reached far worse results than the second object oriented group
of students.

Recent Advances in Educational Technologies

ISBN: 978-1-61804-322-1 50

All student failed in the first algorithmic group.
Half of students (50%) succeeded in the second object

oriented group of student.
Interesting results can be also reached from analysis of the

code of programs (will be published later).
Algorithmic tasks of the test can be divided into two parts.
The first part contains tasks testing following terms:

definition, input and output of the sequence in the form of one-
dimensional array. These tasks was more trained in the
algorithmic group of students.

The second part contains algorithmic construction for one-
dimensional array: e.g. calculations and search, shifts of the
values in the sequence etc. These task was practiced in both
the courses – course ALGDS and programming.

Expected result should be as follows:
• first algorithmic group of students should have better

results in the first part of the test
• the second part of the test should have the similar

results

Result of the first part of algorithmic test
To determine whether the median of the results of the first

part of the test (algorithmic part) (variable definition, input and
output to the sequence) is the same for the both groups of
students. It was again calculated by the nonparametric Mann-
Whitney test.

Calculated P-value is P = 0.0237
with significance level α = 0.05,

so we can reject the null hypothesis that the median of the
results of the first algorithmic part of test algorithmic between
both groups of student is the same. Between groups is
statistically significant difference. Box plots chart of the two
groups of students is shown on Figure 2.

0 1
taught group

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

R
es

ul
ts

of
 th

e
fir

st
pa

rt
of

 th
e

al
go

rit
hm

Fig. 2 Box plot diagram comparing result of algorithmic group of
students with object oriented group of students in the first
part of algorithmic test.

The graph shows that the value of median of students from
the second OOP group of students is greater than the

maximum value of students from the first algorithmic group of
students, excluding outliers.

Result of the second part of algorithmic test
To determine whether the median of the results of student of

the second part of the test (concerning the sequences) is the
same for the first and second group of students was again used
the nonparametric Mann-Whitney test.

Calculated P-value is P = 0.075
with significance level α = 0.05,

so we cannot reject the null hypothesis that the median of
results of the students from the second algorithm part of the
test is the same. Among groups there is not statistically
significant difference.

Box plots graph of both groups of students is shown on
Figure 3. From the graph it is clear that the second group of
students gained better results than the first group.

0 1

taught group

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

R
es

ul
ts

 fr
om

 th
e

se
co

nd
 p

ar
t o

f t
he

 a
lg

or
ith

m

Fig. 3 Box plot diagram comparing result of algorithmic group of
students with object oriented group of students in the
second part of algorithmic test.

D. Sample of Result of Tests
Students do not have problems with:

• algorithms for filling the sequence;
• output the value from sequence;
• algorithm for search of value in the sequence;
• algorithm for shifts value in the sequence;
• using of cycles;
• storing and writing the values to other variables;

Students have problems with:
• algorithm for inserting members to the sequence;
• algorithm for removing members from the sequence.

The problem is with changing the size of the field with
determination or setting the size of the resulting sequence.

Example of task 1:

Create method that adds at the end of the sequence member

Recent Advances in Educational Technologies

ISBN: 978-1-61804-322-1 51

whose value will be determined by input parameter.
The correct solution is shown in figure 4.

Fig. 4 Method – add member at the end of the sequence –

correct solution.

Wrong student’s solution is shown in figure 5 (wrong using

of field sequence wrong assignment to the field).

Fig. 5 Method – add member at the end of the sequence –

wrong solution.

Students has also problems with design of algorithm

development working with multiple sequences. They cannot
verify the possibility of merge of two sequences and connect
more sequences to different sequence.

Example of task 2:
Create method that merge the sequence at the end of the

second one. The second sequence is specified as input
parameter to the new third sequence. The result is returned as
output value of type Sequence. The correct solution is shown
in figure 6.

Fig. 6 Method – merge the sequence at the end of the second

one – correct solution.

Example of wrong student solution is shown in Figure 7.

Fig. 7 Method – merge the sequence at the end of the second

one – wrong student’s solution.

V. CONCLUSION
Paper describes algorithmic thinking and compared the two

methodologies of teaching of programming in relation to the
algorithmic and object oriented thinking.

Based on result of our research it is clear, that no student
from the first group (first structured programming than object
oriented programming) succeeded in the algorithmic part of
the test.

On the other hand 50 % of students from the second group
(only object oriented programming) succeeded the same test.

Detailed analysis of the results of two algorithmic parts test
discovered that the results of the first group was far worse
despite the fact that learning in the first group was more
focused on algorithm development than in the second group.

The causes of failure may be several. One factor could be
underestimation of the credit preliminary test. Another factor
could be in the teacher's approach, because each group was
taught by different teacher. To eliminate this factor, we will
provide in this academic year the same research with the same
teacher for both groups.

The results provide feedback based on which the learning of
algorithm and programming will be modify.

ACKNOWLEDGMENT
This research has been supported by: Specific research

project of University of Hradec Kralove, Faculty of Education
in 2015 and Specific research project of University of Hradec
Kralove, Faculty of Science in 2015.

REFERENCES
[1] E. D. Knuth, L. T. Pardo, "Early development of programming

languages". Encyclopedia of Computer Science and Technology,
Marcel Dekker, Vol 7, pp. 419–493.

[2] R. Pecinovsky, “Jak efektivně učit OOP (How to teach OOP
effectively)”, in Proceedings of the conference Software Development
2005, Ostrava, Technical University of Ostrava, 2005, pp. 174 – 182.

[3] E. Milkova, “Graph theory and algorithms: various approaches to
utilization of virtual learning environment”, in Proc. 14th International
Conference on Interactive Collaborative Learning (ICL2011) - 11th
International Conference Virtual University (VU'11), Piešťany, 2011,
pp. 637 – 642.

[4] E. Milkova, A. Sevcikova, F. Samek, “Výuka algoritmizace – několik
postřehů, rad a doporučení”, in Proc. Poškole 2004 - Sborník Národní
konference o počítačích ve škole, Poskole, Mezinárodní organizační
výbor, 2004, pp. 138-142.

[5] S. Hubalovsky, “Research of Methods of a Multidisciplinary Approach
in the Teaching of Algorithm Development and Programming”, in Proc.

Recent Advances in Educational Technologies

ISBN: 978-1-61804-322-1 52

DIVAI 2012 – 9th International Scientific Conference on Distance
Learning in Applied Informatics, 2012. pp. 147 – 156.

[6] J. A. Sajaniemi, Chenglie, “Teaching Programming: Going beyond
“Objects First””, 2006 in Proc. Psychology of Programming, [online].
Available: http://www.ppig.org/papers/18th-sajaniemi.pdf

[7] M. Ricken, Assignments for an Objects-First Introductory Computer
Science Curriculum, 2005, [online]. Available:
http://www.cs.rice.edu/~javaplt/papers/tr200504.pdf

[8] J. Bennedsen, C. Schulte, “What does objects-first mean?: An
international study of teachers' perceptions of objects-first”, in Proc. of
the Seventh Baltic Sea Conference on Computing Education Research,
Australian Computer Society, Inc., vol. 88, pp. 21-29, 2007. Available:
http://crpit.com/confpapers/CRPITV88Bennedsen.pdf

[9] E. Milková, “Multimedia Tools for the Development of Algorithmic
Thinking”. Recent Patents on Computer Science, 2011, Vol. 4, No. 2,
pp. 98- 107.

[10] D. L. Schacter, D. T. Gilbert, D. M. Wegner, “Psychology”, Bedford,
Worth Publishers, 2011.

Stepan Hubalovsky was born in Trutnov, Czech Republic in 1970, he
obtained master degree in education of mathematics, physics and computer
science in 1995, Ph.D. degree in theory of education in physics in 1998 both
in Faculty of Mathematics and Physics, Charles University in Prague, Czech
Republic and assoc. prof. degree in system engineering and informatics in
2012 in University oh Hradec Kralove, Czech Republic.
He worked 5 years as master of mathematics, physics and computer science
on several secondary schools. He works as associate professor on University
of Hradec Kralove from 2006. He interested in algorithm development,
programming, system approach, computer simulation and modelling.
Assoc. prof. RNDr. Stepan Hubalovsky, Ph.D. is member of Union of Czech
Mathematicians and Physicist.

Ondrej Korinek was born in 1985 in Horice, Czech Republic. He graduated
from the University of Hradec Kralove, Czech Republic in 2010, where he
studied Education Mathematics and Computer Science for Secondary
Schools.
Since 2012, he has continued his studies of Information and
Communication Technology in Education at postgraduate level. Since 2010
he has been working as an ICT teacher at VOS and SPS in Jicin, Czech
Republic. He is interested in algorithms, programming methodology, database
systems and modern technology.

Recent Advances in Educational Technologies

ISBN: 978-1-61804-322-1 53

