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Certain Integrable Cases in Dynamics of a
Multi-Dimensional Rigid Body 1n a
Nonconservative Field

Maxim V. Shamolin

Abstract—This paper is a survey of integrable cases in dy- In basic part we recall general aspects of the dynamics of a
namics of a five-dimensional rigid body under the action of a free multi-dimensional rigid body: the notion of the tensor of

nonconservative force field. We review both new results and angular velocity of the body, the joint dynamical equations of

results obtained earlier. Problems examined are described by . . "
dynamical systems with so-called variable dissipation with zero motion on the direct product R™ x so(n), and the Euler and
Rivals formulas in the multi-dimensional case.

mean.
The problem of the search for complete sets of transcendental ~We also consider the tensor of inertia of a f ve-dimensional

first integrals of systems with dissipation is quite actual; a large (5D —) rigid body. In this work, we study one of two possible

number of works are devoted to it. We introduce a new class of ., . iy which there exists two relations between the principal
dynamical systems that have a periodic coordinate. Due to the ..
moments of inertia:

existence of a nontrivial symmetry groups of such systems, we X o ) )
can prove that these systems possess variable dissipation with (i) there are four equal principal moments of inertia (/3 =
zero mean, which means that on the average for a period with I3 = I, = I5).

respect to the periodic coordinate, the dissipation in the system  Fyrthermore, we systematize results on the study of equa-
is equal to zero, although in various domains of the phase Space, ;. s of motion of a fve-dimensional (5D—) rigid body in a

either the energy pumping or dissipation can occur. Based on . .
facts obtained, we analyze dynamical systems that appear in onconservative force fiel for the case (). The form of these

dynamics of a five-dimensional rigid body and obtain a series of equations is taken from the dynamics of realistic rigid bodies
new cases of complete integrability of the equations of motion in of lesser dimension that interact with a resisting medium by

transcendental functions that can be expresses through a finite |aws of jet fl w when the is influence by a nonconservative

combination of elementary functions.

Index Terms—Case of integrability, dynamic part of motion
equations, multidimensional rigid body.

I. INTRODUCTION

HIS This paper is a survey of integrable cases in dy-

namics of a f ve-dimensional rigid body under the action
of a nonconservative force field We review both new results
and results obtained earlier. Problems examined are described
by dynamical systems with so-called variable dissipation with
Zero mean.

We study nonconservative systems for which usual methods
of the study of Hamiltonian system is inapplicable. Thus, for
such systems, we must directly integrate the main equation of
dynamics (see also [1], [2], [3], [4], [5], [6])-

We generalize previously known cases and obtain new cases
of the complete integrability in transcendental functions of the
equation of dynamics of a fve-dimensional rigid body in a
nonconservative force field

Of course, in the general case, the construction of a the-
ory of integration of nonconservative systems (even of low
dimension) is a quite difficul task. In a number of cases,
where the systems considered have additional symmetries, we
succeed in findin firs integrals through finit combinations
of elementary functions [6], [7], [8], [9].

Maxim V. Shamolin is with the Institute of Mechanics, Lomonosov

tracing force. Under the action of this force, the following
two cases are possible. In this case, the velocity of some
characteristic point of the body remains constant, which means
that the system possesses a nonintegrable servo-constraint (see
also [10], [11]).

The results relate to the case where all interaction of the
medium with the body part is concentrated on a part of the
surface of the body, which has the form of a four-dimensional
disk, and the action of the force is concentrated in the direction
perpendicular to this disk. These results are systematized and
are preserved in the invariant form. Moreover, we introduce
an extra dependence of the moment of the nonconservative
force on the angular velocity. This dependence can be further
extended to cases of the motion in spaces of higher dimension.

Many results of this paper were regularly presented on
scientifi seminars, including the seminar Actual problems of
geometry and mechanics named after Prof. V. V. Trofim v un-
der the supervision of D. V. Georgievskii and M. V. Shamolin.

II. GENERAL DISCOURSE

A. Cases of dynamical symmetry of a five-dimensional body

Let a fve-dimensional rigid body © of mass m with smooth
four-dimensional boundary 0© be under the influenc of a
nonconservative force field this can be interpreted as a motion

Moscow  State  University, Moscow, 119192, Russian Federation; . .. . . .

e-mail:  shamolin@ramblerru,  shamolin@imec.msuru  (see  also of the body in a resisting medium that fill up f ve-dimensional

http://shamolin2.imec.msu.ru). domain of Euclidean space E°. We assume that the body
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is dynamically symmetric. If the body has two independent
principal moments of inertia, then in some coordinate system
Dzqzoxz3z475 attached to the body, the operator of inertia has
the form

diag{ly, I3, I5, I>, I>}, (D

or the form
diag{]l,ll,fg,lg,lg}. (2)

In the firs case, the body is dynamically symmetric in the
hyperplane Dxoxsxyrs.

B. Dynamics on §6) and R®

The configuratio space of a free, n-dimensional rigid body
is the direct product

R" x SO(n) 3)

of the space R™, which define the coordinates of the center
of mass of the body, and the rotation group SO(n), which
define rotations of the body about its center of mass and has
dimension
nn—1) nn+1)
n —+ = .
2 2

Therefore, the dynamical part of equations of motion has

the same dimension, whereas the dimension of the phase space

is equal to

n(n +1).

In particular, if € is the tensor of angular velocity of a fve-
dimensional rigid body (it is a second-rank tensor, see [12],
[13], [14], [15], [16]), ©2 € so(5), then the part of dynamical
equations of motion corresponding to the Lie algebra so(5)
has the following form (see [17], [18]):

QA+ AQ+[Q, QA+ AQ] = M, S
where
A = diag{A1, A2, As, Agl, ®)
N — —Lh+L+Is+1,+ 15
1 — 92 ’
L —L+ I3+ 14+ 15
)\2: )
2
I +1 — I3+ 1, + I
A3 = ,
2
L+1+ 13— 1)+ 15
A4: )
2
L+ L+1I3+1,— Iy
As = > :

M = MFp is the natural projection of the moment of external
forces F acting to the body in R® on the natural coordinates
of the Lie algebra so(5), and [ ] is the commutator in so(5).
The skew-symmetric matrix corresponding to this second-rank
tensor {2 € so(5) we represent in the form

where wi, wo, ..., wyo are the components of the tensor
of angular velocity corresponding to the projections on the
coordinates of the Lie algebra so(5).

Obviously, the following relations hold:

N— A =1 — I )

forany ¢,5 =1,...,5.
For the calculation of the moment of an external force acting
to the body, we need to construct the mapping

R’ x R® — s0(5), ®)
than maps a pair of vectors

(DN,F) e R° xR’ )
from R® x R® to an element of the Lie algebra so(5), where

DN = {0, zan, 3N, 4N, T5N |

(10)
F= {F1>F27F37F47F5}7

and F is an external force acting to the body. For this end, we
construct the following auxiliary matrix

0 zonv x3y Tan  TsNn
<F1 F F F, Fs > D
Then the right-hand side of system (4) takes the form
M = {xynF5 — w58 Fy, 258 F3 — 235 F,
TonFs — wsN Fo, wsn 1, 3N Fy — 24N B,
TanFo — wan Py, —xan 1, 2on Fs — 238 Fa,
xsnF1, —xonF1} (12)

Dynamical systems studied in the following, generally
speaking, are not conservative; they are dynamical systems
with variable dissipation with zero mean (see [12]). We need
to examine by direct methods a part of the main system of
dynamical equations, namely, the Newton equation, which
plays the role of the equation of motion of the center of mass,
i.e., the part of the dynamical equations corresponding to the
space R?:

mWg = F,

(13)

where W¢ is the acceleration of the center of mass C of
the body and m is its mass. Moreover, due to the higher-
dimensional Rivals formula (it can be obtained by the operator
method) we have the following relations:

We = Wp+Q2DC+EDC, Wp = Vp+Qvp, E =, (14)

where Wp, is the acceleration of the point D, F is the external
force acting on the body (in our case, F = S), and F is the
tensor of angular acceleration (second-rank tensor).

0 —wip w9 —wr wy So, the system of equations (4) and (13) of fifteent order
Wio 0  —ws ws —ws on the manifold R® x so(5) is a closed system of dynamical
equations of the motion of a free fve-dimensional rigid body
—wg  Wg 0 —ws wo , 6) : ;
under the action of an external force F. This system have been
wr TWe W 0 —w separated from the kinematic part of the equations of motion
—Ww4 w3  —Wwa Wi 0 on the manifold (3) and can be examined independently.
ISBN: 978-1-61804-287-3 329
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III. GENERAL PROBLEM ON THE MOTION UNDER A
TRACING FORCE

Consider a motion of a homogeneous, dynamically sym-
metric (case (1)), rigid body with front end face (a four-
dimensional disk interacting with a medium that fill the fve-
dimensional space) in the fiel of a resistance force S under
the quasi-stationarity conditions.

Let (v,«, (1,52, 03) be the (generalized) spherical coor-
dinates of the velocity vector of the center of the four-
dimensional disk lying on the axis of symmetry of the body,

0 —Ww10 Wy —Ww7 Wy
w10 0 —Wws W —Wws
Q= —wy ws 0 —ws wo
wr —We ws 0 —Ww1
—wy w3 —Wwy w1 0

be the tensor of angular velocity of the body, Dxizoz3zsTs
be the coordinate system attached to the body such that the
axis of symmetry C'D coincides with the axis Dz, (recall that
C is the center of mass), and the axes Dxo, D3, Dxy, Dxs
lie in the hyperplane of the disk, and Iy, Iz, Is = I, 14 =
I>, Is = I, m are characteristics of inertia and mass.

We adopt the following expansions in the projections to the
axes of the coordinate system Dxjxox32425:

DC = {_Uv 07 07 07 0}7
Vp = {vcosa, vsinacos f1,vsin asin 1 cos B,
vsin asin By sin 3 cos B3, v sin asin [y sin B2 sin f5}. (15)

In the case (1) we additionally have the expansion for
the function of the influenc of the medium on the fve-

dimensional body:
S={-5,0,0,0,0}, (16)

i.e., in this case F = S,

Then the part of the dynamical equations of motion (includ-
ing the analytic Chaplygin functions; see below) that describes
the motion of the center of mass and corresponds to the space
RS, in which tangent forces of the influenc of the medium
on the four-dimensional disk vanish, takes the form

0 cos a@—w sin a—w1gv sin a cos B1 +wgv sin a:sin [y cos Bo—

—w7v sin asin By sin By cos B34w4v sin asin [y sin Fo sin B3+

(17)

S
+o(who +wg +wr +wi) = -,
v sin o cos 31 + G cos acos P — Blv sin asin 31+
+w10v cOS @ — wgv sin asin (31 cos Po+
+wgv sin asin Gy sin Gs cos B3 —

—w3v sin asin (1 sin B, sin O3 —

—Bovsin asin By sin Bs — wyv cos a + wgv sin a cos B —
—wsv sin asin F; sin Ba cos B3+
+wayv sin asin By sin Fs sin G —

(19)

¥ sin acsin 1 sin fs cos B3 4 dw cos asin (1 sin (o cos B3+

—a(wgwm — WsW7 — CUQW4) + O'CJg = O,

+/6;1v sin a cos 31 sin Bo cos B3+
+/6;21) sin asin 31 cos Bo cos B3 —
*531) sin acsin (31 sin B sin B3 +w7v cos a—wgv sin a cos P+
4w sin asin B cos P — w1 v sin acsin By sin Bs sin fz+
+o(wewio + wswe — wiwy) — owy = 0, (20)
¥ sin asin By sin fs sin B3 + aw cos asin [y sin Gs sin O3+
—&—Bw sin « cos (31 sin (o sin B3+
+Byvsin asin By cos 3o sin B3+
—i—ﬂé,v sin avsin (31 sin B cos B3 —w4v cos a+wsv sin & cos (31—
—wov sin arsin B cos B2 + w1 v sin asin (31 sin By cos B3 —
—o(wswig + wawg + wiwy) + 0wy =0, 21)

where

S = s(a)v?, 0 =CD, v>0. (22)

Further, the auxiliary matrix (11) for the calculation of the
moment of the resistance force has the form

0 ®any T3N TAN TN
-S 0 0 0 0
then the part of the dynamical equations of motion that

describes the motion of the body about the center of mass
and corresponds to the Lie algebra so(5), becomes

(23)

(Mg + A5)w1 + (Mg — As)(wawr + wawe + waws) = 0, (24)
(A3 + As)w2 + (A5 — A3)(wiws — waws — wawg) = 0, (25)
(A2 + As)ws + (A2 — As5) (wawio — waws — wiws) = 0, (26)
(A1 + As)wg + (A5 — A1) (wawio + wawg + wiwr) =

= —I5N (04751,52,537 ?) s(a)v?, (27)

(As + A)ws + (A3 — A1) (wrwg + wews + wiwa) = 0, (28)
(A2 + A)ws + (A1 — A2)(wsws — wrwig —wiws) = 0, (29)

(A + A)wr + (M — M) (wrws — wewip — wswyg) =
Q
= 4N (aa ﬁ17527537 7]) 8(06)1)2, (30)

(A2 + A3)ws + (A2 — Az)(wowio + wswe + wawsz) = 0, (31)

(A1 + A3)wg + (A3 — A1) (wswio — wswry — waowy) =

—0(wows + wewr + wawy) — owig = 0, (18) Q
_ 3l 2
¥ sin asin 81 cos B2 + & cos asin B cos Bo+ = TN (a’ﬁl’ﬂ%ﬂ& v> s(@)v’, (32)
—1—510 sin a cos 31 cos By — (M 4+ A2)wio + (M1 — A2)(wswy + wewr + wsws) =
ISBN: 978-1-61804-287-3 330
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= T2N (aa ﬁhﬂ?vﬁfﬂ? i}) S(Q)U2.

Thus, the phase space of system (17)—(21), (24)—(33) of
fifteent order is the direct product of the fve-dimensional
manifold and the Lie algebra so(5):

R' x 8* x s0(5). (34)

We note that system (17)—(21), (24)—(33), due to the existing
dynamical symmetry

(33)

Iy = I3 = Iy = I5, (35)

possesses cyclic firs integrals

w1 =w?, wo = wY, w3 =wd, ws=wl, wg =wl, wg = w.

(36)

In the sequel, we consider the dynamics of the system on
zero levels:

0_,0_ 0_,0_ 0_ 0_
W] =wy =w3 =wy =wg =wg =0. 37

If one considers a more general problem on the motion of
a body under a tracing force T that lies on the straight line
CD = Dz and provides the fulfillmen of the relation

v = const (38)

throughout the motion, then instead of Fj system (17)—(21),
(24)—(33) contains

T — s(a)v?, 0 = DC. (39)

Choosing the value T of the tracing force appropriately, one
can achieve the equality (38) throughout the motion. Indeed,
expressing 7' due to system (17)—(21), (24)—(33), we obtain
for cos a # 0 the relation

T =T,(a, B, B2, B3, Q) = mo(wj + w? + wi + wip)+

Fv (045/817527637?>:| ) (40)

mo sin o

2
1
sl [ 315 cos

where

Q
Fv <a3517623/637’u> =
= T5N (a, B1, B2, B3, v) sin (31 sin (3 sin B3+
Q\ . .
+xan (a, B1, B2, B3, v> sin (31 sin 5 cos B3+
Q\ .
+r3N <0¢751,52753, v) sin B cos B2+

. (a,ﬂl,ﬂg,ﬂs, f) cos s 1)

here we used conditions (36)—(38).

This procedure can be interpreted in two ways. First, we
have transformed the system using the tracing force (control)
that provides the consideration of the class (38) of motions in-
teresting for us. Second, we can treat this as an order-reduction
procedure. Indeed, system (17)—(21), (24)—(33) generates the
following independent system of eighth order:

& cos acos 31 — Blv sin asin 31+

ISBN: 978-1-61804-287-3
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4w1pv cos a — owig = 0, 42)
Aaw cos a:sin By cos B + Blv sin « cos 31 cos B —
— B sin asin By sin Ba — wov cos a + oWy = 0, 43)

A& cos asin [y sin [ cos B3 + Blv sin o cos 1 sin [s cos B3+
+Byv sin asin By cos Bs cos B5—

—Bsvsin asin By sin Ba sin B + wrv cos a — oWy = 0, (44)

& cos acsin (31 sin fs sin B3 + Blv sin « cos 31 sin (o sin B3+
+Bov sin asin By cos B sin B3+

—l—BgU sin acsin (31 sin By cos B3 — wav cos a + owy = 0, (45)

3wy = —x5N (a,ﬂhﬂz, Bs, S) s(a)v?, (46)

Q
3wy = 14N (Oé,ﬁlﬂmﬁ?n v) s(a)?, 47)

3lowg = —x3N (04,51752, B3, ?) s(a)v?, (48)

0
3lwyio = ToN (04751,527537 U) s(a)v?, (49)

which, in addition to the permanent parameters specifie
above, contains the parameter v.
System (42)—(49) is equivalent to the system

AV cos & + v cos a{ww CcOos 51—1—
+[(wr cos B3 — wy sin B3) sin By — wy cos Bo] sin Fr }+
+o{—wig cos By + [Wy cos Po—
— (W7 cos B3 — Wy sin B3) sin o] sin B1} = 0, (50)
Brvsin o + v cos a{[(wr cos f3—
—wy sin f3) sin B — wg cos fa] cos B1 — wig sin By }+
+0o{[Wg cos By — (w7 cos B3—
—wy sin f3) sin B2] cos f1 + wipsin B1} = 0, 51)
Bovsinasin By + v cos a{[wr cos B3—
—wy sin B3] cos Ba + wo sin fBo }+
+0 {— [W7 cos B3 — Wy sin B3] cos P — Wg sin Ba} = 0, (52)

Bsvsin acsin By sin By + v cos o { —wy cos P — wr sin B3} +

+o {W4 cos B3 + wrsin B3} = 0, (53)
. v? Q
w4 = _@xSN (aaﬁhﬁQ?ﬁSa ’U) S(Oé), (54)
2
w'? — ;)721'4N (auﬂ17527ﬁ37 S) S(a)7 (55)
2 Q
wy = 7;723931\7 (Oéaﬂlaﬂ%ﬂ& U> s(a), (56)
2
(-‘.-)10 = ;TngN (Oé)ﬂlaﬁ?vﬁ?n 2) S(Q)' (57)
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Introduce the new quasi-velocities. For this, we transform
wy, w7, Wy, w1g by three rotations:

21
2
zZ3 -
2
Wy
w7
=T34(—P1) 0 T3(—P2) 0 Ty 2(—f3) we | (58)
w10
where
1 0 0 0
0 1 0 0
T5.4(0) = 0 0 cosB —sing |’
0 0 sinf cosp
1 0 0 0
0 cosfB —sinf 0
Ta3(8) = 0 sing cosB 0 |’
0 0 0 1
cosf —sing 0 0
sin cospB 0 O
T1.2(8) = 0 0 10
0 0 0 1

Therefore, the following relations hold:

z1 = wy cos O3 + wy sin fs,

22 = (w7 cos B3 — wy sin B3) cos Bz + wg sin Ba,
23 = [(—wr cos B3 4+ w4 sin B3) sin Fa+

+ wg cos 2] cos B1 + wip sin fi,

z4 = [(w7 cos B3 — wy sin f3) sin Go—

— wy cos fa] sin B1 + wyg cos fy.

(59)

As we see from (50)—(57), we cannot solve the system with
respect to &, (1, B2, B3 on the manifold

01 = {(a, B1, B2, B3, ws, wr,wo, wip) € R® :
a =Sk Bi=ml, fo=mnlo, kil €Z}.  (60)

Therefore, on the manifold (60) the uniqueness theorem for-
mally is violated. Moreover, for even k and any [1,ls, an
indeterminate form appears due to the degeneration of the
spherical coordinates (v, cv, 81, B2, 83). For odd k, the unique-
ness theorem is obviously violated since the firs equation (50)
degenerates.

This implies that system (50)—(57) outside (and only out-
side) the manifold (60) is equivalent to the system

ov s(a)

Q= —2z4 +

v (a7ﬂ17527ﬂ35§}2> ) (61)

315 cos o
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+Lv 8.(0‘) AU,B <a7ﬁlvﬁ27/837 i}) {_Zl . !

02 Q
L _ v r AN
Z4 31-28( ) v (aaﬁlaﬁQaﬁ?n U)
cos o
—(zf+z§+z§)m
O I (Y L
3[2 sin o zZ3 1}1 «, D1, P2, 37

Q
+22A1J,2 <O‘7617ﬂ2aﬁ37 ’U) -

*ZlAv,S (047617627ﬂ33 ?)}7 (62)

cos a cos (31

) CoS o
23 = 2324 p :
sin « sin v sin 3y

ov s(a) Q

3L sina {24y (Om@hﬂz»ﬁsa v) -
Q\ cos

_Z2Av,2 <a7ﬁ11ﬂ27537 U) Singi
Q\ cos

+21A’U,3 (auﬁhﬂQ?ﬁ?nv) Slngl}

v? Y/
_ES( ) v,1 <a7ﬁla627ﬁ?n ’U) ) (63)
Cos o cos « cos (1 7

22 = 2224 3 :
sin « sin « sin 31

cos B2
Lsin o sin (1 sin By

(ommn 2) {ran )

cos 3o } N

sin 31 sin 3

qcosa 1

ov s(a)

315 sin «

315 sin o

2

Q
+£5( ) v,2 (a7ﬁ1a627ﬁ3av>a (64)

. cos o cos & ¢os (31
21 = R124—
in

3 -
sin « sin

cos By
sin «v sin 31 sin 3y

+Lv S.(a) Av,3 (aaﬂlaﬂ%ﬂ& i}) X

315 sin«

cosa 1

+2z122

e _Zcosﬁl+z 1 cosfs B
4 Ssinﬁl 2sinﬁl sin G
v? Q
_ES( ) v,3 (a7ﬁ1a527/637v)7 (65)
. cosa  ov s(a
N Y NN BT
sina 3y sina
. COos av
Bo=—mp———7r
sin acsin (31

ov__s(a) (a By, o, o, ) 67)

31, sin asin ﬁ
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4 cos o
3 'sin asin (1 sin By

ov s(a)

S I

. . . v
315 sin asin 3y sin Gy
where

Q
A’U,l <a7ﬂ17527ﬂ35 ’U> =
Q\ .
= —T2N (aa/@17ﬁ27ﬁ37 ’U) Slnﬁ1+
Q
+I3N (Oé,ﬁlaﬂz,ﬁ?w v) cos f31 cos B+
Q .
+TaN <OZ, 517 ﬁ?a 537 U> COS ﬂl sin ﬁ? COos ﬂ3+
Q . .
+TsN <0[7 517 ﬁ27 537 U) Ccos ﬁl sin /82 sin /637
Q
AU,Q <a7ﬂlaﬂ27ﬂ35 ’U> =

— ooy (0 st )

Q
+x4n (047517527531 v) cos (32 cos B3+
Q .
+rsNn (aaﬁhﬂQaﬂ?n U> COSﬂQ Slnﬂ?’a
Q
Av,3 (a7ﬁ17ﬁ27ﬁ35 ’U> =

= —TyN (04751,52,53, 2) sin F3+
Q

+r5N (Ohﬂhﬂm&;, v) cos [33,
and the function I';, (o, 1, B2, B3, €2/v) can be represented in
the form (41).

Here and in the sequel, the dependence on the group
of variables («, 31,02, 3s3,§2/v) is meant as the composite
dependence on («, 1, B2, B3, 21 /v, 22/v, 23/v, 24/v) due to
(59).

The uniqueness theorem for system (50)—(57) on the man-
ifold (60) for odd £ violates in the following sense: for odd
k through almost all points of the manifold (60), passes a
nonsingular phase trajectory of system (50)—(57) intersecting
the manifold (60) at right angle and there exists a phase
trajectory that at any time instants completely coincides with
the point specified However, physically these trajectories are
different since they correspond to different values of the
tracing force. Prove this.

As was shown above, to maintain the constraint of the form
(38), we must take a value of T" for cosa # 0 according to
(40).

Let

lim ﬂrv (a7/61a527ﬁ37 S) =

a—m/2 COS
ISBN: 978-1-61804-287-3

) (ﬁl,ﬁz,ﬁg, f) . (70)

Note that |L| < 400 if and only if

s (rv (a,ﬁhﬂz,ﬁgg) s(a))‘ < too. (7)
(8 v

For « = 7/2, the required value of the tracing force is
define by the equation

T =T, (5,518, 05,2) =

mo Lv?
215

lim
a—r/2

= mo(wj + Wi + wj + wiy) — (72)

where wy, w7, wg, w1g are arbitrary.

On the other hand, maintaining the rotation about some
point W by the tracing force, we must choose this force
according to the relation

mv2

o (73)

T =T, (5510255, 2) =

where Ry is the distance CTV.

Relations (72) and (73) define in general, different values
of the tracing force T' for almost all points of the manifold
(60), which proves our assertion.

IV. CASE WHERE THE MOMENT OF A NONCONSERVATIVE
FORCE IS INDEPENDENT OF THE ANGULAR VELOCITY

A. Reduced system

Similarly to the choice of Chaplygin analytic functions, we
take the dynamical functions s, xon, 3N, Tan, and x5y in
the following form:

s(a) = Bceosa,
TN (a,ﬁ17ﬁ27ﬁ37?) =
= xon0(a, B, B2, B3) = Asinacos 31,
T3N (aaﬁhﬁ%ﬁ&?) =

= x3no(a, B, P2, B3) = Asinasin f; cos [, (74)

Tan (a,ﬂhﬁz’ﬁ&?) =

= Zano(e 1, B2, f3) = Asincsin fy sin 2 cos b3,
TN (a761762u/637§)2) =
= z5n0(a, B1, B2, B3) =

= Asinasin fy sin Gosinf3, A, B > 0, v # 0.

We see that in the system considered, the moment of noncon-
servative forces in independent of the angular velocity (but
depends on the angles «, 81, (2, 33).

Herewith, the functions
Av,s (avﬂlvﬁ%ﬂ&g/i})v s =
(68), take the following form:

Q
F’U (aaﬁhﬂQaﬂ:’n U) = ASina7

Fv (04;5176276379/7})7
1,2,3, in system (61)-
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Q
Av,s <avﬂlaﬂ27ﬂ3vv) =0, s= 17213' (75)
Then, due to the nonintegrable constraint (38), outside the
manifold (60), the dynamical part of the equations of motion
(system (61)—(68)) has the form of the following analytic

system:
, 0 ABv

a =—z sin « 76
4 3]—2 ) ( )
ABv? cos a
/ . 2 2 2
24 = sinacosa — (2] + 25 + 23) — 77
4 3[2 ( 1 2 3) sin o ) ( )
, ! 9 9.COSQcOsf
Za = 2324 — + (27 4+ 25) — - 78
37 B ina (=1 2)sma sin 3y’ (78)
, Ccos & cos & ¢os (31
29 = 2224 — 2223 . -
sin « sin « sin
scosa 1 cosf
—27 = . —, (79)
sin « sin B sin By
, cos o cos & ¢os (31
2] = 2124 — R1%3 7 -
sin sin « sin
cosa 1 cosfs
+2122— - - ) (30)
sin « sin B sin By
cos &
By = 23—y, (81)
sin o
Cos &
By = —zg——r, (82)
sin acsin (q
CoS &
By ==z (83)

Ysinasin By sin Bo”

Further, introducing the dimensionless variables, parame-
ters, and the differentiation as follows:

AB
Zp = oz, k=1,2,3,4, nd = ———,
31,
b=ong, <->=nov <>, (84)
we reduce system (76)—(83) to the form
o = —z4+bsina, (89)
/ . 9 9 9, COS (¢
zy =sinacosa — (27 + 25 + 23 ) — 86
4 (21 2 3)sma’ (86)
0S (v 9 9,COSCCOsf
25 = 23% + (27 + 25) — - 87
3 344 o (1 2)smasmﬁ1’ (87)
Cos a cos & ¢os (31
Zo = 2224 — R2R3 - -
in sin « sin
scosa 1 cosf
_Zl . . . ) (88)
sin «v sin 31 sin (B
, cos o cos « cos (31
Rl = k174 — R1%R3 .
sin «v sin 31
cosae 1 cosfy
+2122— - - b ; (89)
sin «v sin 31 sin (B
cos o
Bl=2— (90)
sin «
cos o
By = —zg—r, 1)
sin acsin (q

ISBN: 978-1-61804-287-3

COS «x

b= : 92
Pa== sin a:sin (1 sin Go ©2)

We see that the eighth-order system (85)—(92) (which can be
considered as a system on the tangent bundle T'S* of the four-
dimensional sphere S*, see below) contains the independent
seventh-order system (85)—(91) on its own seven-dimensional
manifold.

For the complete integration of system (85)—(92), in general,
we need seven independent firs integrals. However, after the
change of variables

24 Wy
z3 w3
%) w2

21 wq

wy = 24, w3 = /27 + 22 + 23,

22 23
Wy = —, W1 =

)
z1 V22 + 22

system (85)—(92) splits as follows:

93)

o = —wy + bsinc,

p . 5 COS O
wy = sina cos o — w3

94
95)

sina’
Cf)S a 96)

sino’

wh = w3wy

1+ w3 cos (2
. )
wo  sin (g

w/2 = d2(’w4,w371U2,’LU1;Ol7ﬁ1,ﬁ2,ﬂ3) (97)

ﬁé = dg(w4,1U37U}2,UJ1;OC,,81,62763),
1+ w? cos 1
. 9
wy  sin Gy

wll :dl(w47w3aw27w1;a7ﬁlaﬁ2aﬁ3) (98)

ﬁi = dl(w4aw37w2awl;aaﬁ1aﬁ27ﬁ3)a
ﬂé = d3('LU47U137U12,W1;a,ﬁ1,ﬂ2,63), (99)
where

dl(w47w37w27w1; a761a627ﬂ3) =
COS ¥

= Z3(wa, w3, wa, w1) ——,
sin o

dg(w4,UJ37UJ2,U)1;Oé,ﬁl,ﬁ2,ﬁ3) =

cos a (100)

= —Zo(wy, w3, wa, W) ——————
2 (wa, w3, wo, l)sinasinﬂl’

d3(’ll}4,w37U)Q,wlga,ﬂl,ﬁg,,@?,) =

COS v

= Z1(wy, w3, we, W) ———————

1(wa, ws, ws, 1)sinozsinﬂlsinﬂ27
herewith

2k = Zk(’w4,U)3,U)27’U/1)7 k= 172733 (101)

are the functions due to the change of variables (93).

We see that the eighth-order system splits into independent
subsystems of lower order: system (94)—(96) has order three
and systems (97), (98) (after the change of the independent
variable) have order two. Thus, for the complete integration
of system (94)—(99) it suffice to specify two independent firs
integrals of system (94)—(96), one firs integral of each system
(97), (98), and an additional firs integral that attaches Eq. (99).

Note that system (94)—(96) can be considered on the tangent
bundle 7'S? of the two-dimensional sphere S2.
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B. Completelist of invariant relations

System (94)—(96) has the form of a system that appears in
the dynamics of a three-dimensional (3D —) rigid body in a
fiel of nonconservative forces.

First, to the third-order system (94)—(96), we put in corre-
spondence the nonautonomous second-order system

dwy, sinacosa —w?cosa/sina
da —wy + bsina ’
. (102)
dws  wszwy cos a/f sin o
do —wy4 + bsin «

Applying the substitution 7 =
(102) in the algebraic form

sin o, we rewrite system

dwy 7 — w3 /T

dr —wy + b7 (103)
dws — wzwy/T

dr ~ —wy + b7’

Later on, introducing the homogeneous variables by the
formulas
W3 = U1T, Wy = URT,

(104)

we reduce system (103) to the following form:
1—u?
dr  —ug+ b
Ui U

dr ul_—uQ—i—b’

which is equivalent to the system

(105)

dUQ

1 —u? +u3 — busy
T2
dr

—Ug + b
duy  2uius — buy
FoL 22 L
dr —Ug + b
To the second-order system (106), we put in correspondence
the nonautonomous first-orde equation

9

(106)

1—u? +ud — buy

2uius — buyg

dup _
du1 -

which can be easily reduced to the exact-differential form:

, (107)

It possesses two analytic firs integrals of the form

w3 4 w3 + sin? a = C} = const, (112)

ws sina = Cy = const. (113)

Obviously, the ratio of two firs integrals (112), (113) is also
a firs integral of system (111). But for b # 0, each of the
functions

w3 4+ w2 — bwy sin o + sin? o (114)

and (113) is not a firs integral of system (94)—(96). However,
but their ratio is a firs integral for any b.

Further, we fin the explicit form of the additional firs
integral of the third-order system (94)—(96). For this, we
transform the invariant relation (109) for u; # 0 as follows:

b\’ C1\° b2
(1a=3) +(u-T) =572

We see that the parameters of this invariant relation satisfy
the condition

(115)

b+ C?—4>0, (116)

and the phase space of system (94)—(96) is stratifie into the
family of surfaces define by Eq. (115).
Thus, by relation (109), the firs equation of system (106)
has the form
2(1 — bug + u%) — ClUl(Ol, UQ)
—us +b

d’LLQ
T— =
dr
where

1
U1(01,UQ) = §{C’1i\/012—4(u§—bu2+1)}; (118)

, (117)

the integration constant C is define by condition (116).
Therefore, the quadrature for the search for the additional
firs integral of system (94)—(96) becomes

dr
T
- (b— 'LLQ)d’LLQ

a / 2A0 — C1{Cy + \/C? —4A0} /2’

(119)

0 2
24,2 1 A =1 —bug + uj.
d(“2+“1 U2 ):o. (108)
uy Obviously, the left-hand side (up to an additive constant)
Thus, Eq. (107) has the following firs integral: equals
2 2 ) In | sin a. (120)
uptui Zbuat C = const, (109) If
(751 b
_ 2 _ 12 2
which in the previous variables has the form U2=5 =", by = 0"+ C7 — 4, (121)
w? +w? — bw4. sina + sin? o — O, = const (110) then the right-hand side of Eq. (119) has the form
W s & 1 / d(b? — 4r?)
Remark 1. Consider system (94)—(96) with variable dissi- 4. (b3 —4r?) £ C1\/b7 — 4r?
pation with zero mean, that becomes conservative for b = 0: d
71
! = — _b/ =
e R AN
wy = sina cos a — ws ——, (111) . .
Sin o 1 Vb —4 b
, cosa — S| Mg 4 2 (122)
W3 = WaWg——. 2 Ch 2
sin «
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where

dT3
Ilz 5 3 , T's =
Vbi —r3(rs £Ch)

In the calculation of integral (123), the following three cases
are possible.

b2 —4r2.  (123)

. b> 2.
1 b2 —4 b3 —
Il = — In \/ + \/ TS + Cl +
2vb% — 4 rs £ Ch 2 — 4
+ 1 In \/b2—4—\/b%—r§ Cl +
2vb? — 4 rs £ Ch 2 — 4
+-const. (124)
. b<2.
1 . xCirs + b%
L = arcsin + const. 125
1 4 — b2 bl(ngl:Cl) ( )
. b=2.
I — Vb — + const. (126)
1= Cl (7"5 + Cl)
Returning to the variable
b
rp=—t 2 (127)
sinae 2
we obtain the fina expression for I;:
. b>2.
1 Vb2
Il _ 4+ 27”'1 + Cl +
22 — \/b2 4r? £y b2 — 4
1 Vb2 2 C
+ iF2n F L | +const. (128)
2vb% — \/b2 4r§ +C VP-4
I b<2.
1 C1/b? — 4 b?
I = arcsm it + const. (129)
V4 —b? 1(/bF —4r? £ CY)
. b=2.
2
1 + const. (130)

[ =
! :FCl(\/b%—élT%:l:Cl)

Thus, we have found an additional firs integral for the
third-order system (94)—(96) and we have the complete set of
firs integrals that are transcendental functions of their phase
variables.

Remark 2. We must substitute the left-hand side of the firs
integral (109) in the expression of this firs integral instead C'.

Then the additional firs integral obtained has the following
structure (similar to the transcendental firs integral in planar
dynamics):
wy W3

In|sinal + Go (sin a, ) = Cy =const. (131)

sina’ sina

(97), (98), and an additional firs integral that attaches Eq.
(99).

To fin a firs integral for each (potentially separated)
system (97), (98), we put in correspondence the following
nonautonomous first-orde equation:

dws 1+ w? cos B
dﬁs B Ws sin ﬁs ’

After integration, this leads to the invariant relation

1+ w?

sin (3,

s=1,2. (132)

= (Cs49 =const, s =1,2. (133)

Further, for the search for an additional firs integral that
attaches Eq. (99), to Egs. (99) and (97) we put in correspon-
dence the following nonautonomous equation:

dwy

5 - —(1 4 w3) cos Ba. (134)
Since, by (133),
Cycos By = +4/C% — 1 — w3, (135)
we have
‘C%;— (,1*4(H 2),/C2 —1 — wl. (136)

Integrating the last relation, we arrive at the following
quadrature:

C’4dw2

F(B3+ Cs =/ , Cs = const.
R A e R M
(137)
Integrating this relation we obtain
C
Ftg(Bs + Cs5) = At , Cs =const.  (138)

VCZ =1 —u3

Finally, we have the following form of the additional firs
integral that attaches Eq. (99):

C’4w2
VCZ —1—ws

Thus, in the case considered, the system of dynamical
equations (17)—(21), (24)—(33) under condition (74) has twelve
invariant relations: the nonintegrable analytic constraint of the
form (38), the cyclic firs integrals of the form (36), (37), the
firs integral of the form (110), the firs integral expressed by
relations (124)—(131), which is a transcendental function of the
phase variables (in the sense of complex analysis) expressed
through a finit combination of elementary functions, and,
finall , the transcendental firs integrals of the form (133) and
(139).

arctg + B3 = C5, C5 = const. (139)

Theorem 1. System (17)—(21), (24)—(33) under conditions
(38), (74), (37) possesses twelve invariant relations (complete
set), five of which transcendental functions from the point of
view of complex analysis. Herewith, all relations are expressed
through finite combinations of elementary functions.

Thus, for the integration of the eighth-order system (94)-
(99), we have found two independent firs integrals. For the
complete integration, as was mentioned above, it suffice to
fin one firs integral for each (potentially separated) system
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C. Topological analogies
Consider the following seventh-order system:
5"—&— b*écosf + siné cos {—

sin{

cos& ’

— [ 4 1j22 sin? n1 + 1j3% sin? 1y sin? 5]
14 cos?¢
cos¢siné B

— (172 4 1j3? sin? 1y ) sin 1y cos . = 0,
1+ cos? &

cos & siné

11 + barjy cos € + Enjy

. . ;. 140
12 + by1ja cos § + £1jo (140)

[¢0)]

~+ 21172 — LI 1752 sinn cos g = 0,
sinm

14 cos?¢
cosésiné

2 ity 2 = 0, b >0,
sin sin 7z

13 + btjz cos € + Enjs

C

+ 21173

which describes a fi ed fve-dimensional pendulum in a fl w
of a running medium for which the moment of forces is
independent of the angular velocity, i.e., a mechanical system
in a nonconservative field In general the order of such a
system is equal to 8, but the phase variable 73 is a cyclic
variable, which leads to the stratificatio of the phase space
and reduces the order of the system.
The phase space of this system is the tangent bundle

TSB{%?ﬁla772a7737§a771a7727773} (141)

of the four-dimensional sphere S*{¢, 71, 72,73 }. The equation
that transforms system (140) the system on the tangent bundle
of the three-dimensional sphere

73 =0, (142)
and the equations of great circles
7 =0,172=0,173=0 (143)

defin families of integral manifolds.

It is easy to verify that system (140) is equivalent to the
dynamical system with variable dissipation with zero mean
on the tangent bundle (141) of the four-dimensional sphere.
Moreover, the following theorem holds.

Theorem 2. System (17)—(21), (24)—(33) under conditions

Let x = (1N, 2N, T3N, TaN, Tsn) be the coordinates of
the point IV of application of a nonconservative force (influ
ence of the medium) acting on the four-dimensional disk and
Q = (Q1,Q2,Q3,Q4,Q5) be the components independent of
the tensor of the angular velocity. We consider only linear
dependence of the functions (z1x,Z2n,T3N,Tan,TsNn) ON
the tensor of angular velocity since this introduction itself is
not obvious.

We adopt the following dependence:

r=0Q+R, (144)

where R = (R1, Ra, Rs, R4, Rs) is a vector-valued function
containing the components of the tensor of angular velocity.
The dependence of the function R on the components of the
tensor of angular velocity is gyroscopic:

Ry
Ry
R=| Rs | =

Ry

Rs
0 —wip wyg —wr wy h1
w1 0 —ws  wg —ws ha

:_l —Wwo ws 0 —Wws w2 h3 ,

v w7 —wg  Wws 0 —w1 hy
—W4 w3 —Wo w1 0 h5

(145)
where (hi, ho, h3, hy, hs) are some positive parameters.
Since x1n = 0, we have
w10

Ton = Q2 — h1—,
v
)

z3n = Q3 + h177
w7

Tan = Q4 — h177

Wy
5Ny = Q5 + h17-

(146)

B. Reducedsystem
Similarly to the choice of the Chaplygin analytic functions

Q2 = Asinacos 31, Q3 = Asinasin (1 cos [o,

(38), (74), (37) is equivalent to the dynamical system (140).

Indeed it suffice toset « =&, B1 =m1, P2 =12, O3 =
7737 b = _b*

V. CASE WHERE THE MOMENT OF A NONCONSERVATIVE
FORCE DEPENDS ON THE ANGULAR VELOCITY

A. Introduction of the dependence on the angular velocity

This chapter is devoted to the dynamics of a fve-
dimensional rigid body in the fve-dimensional space. Since
the present section is devoted to the study of the motion
in the case where the moment of forces depends on the
tensor of angular velocity, we introduce this dependence in
a more general situation. This also allows us to introduce this
dependence for multi-dimensional bodies.

ISBN: 978-1-61804-287-3

Q4 = Asin asin 4 sin (s cos f3,

Qs = Asinasin 3y sin B sin 83, A > 0,

(147)

we take the dynamical functions s, xon, 3N, Tan, and z5n
in the following form:

s(a) = Bcosa, B >0,

Q
TaN (a,ﬁl»ﬁ% v) = Asinacosf; — h%’

Q
TN (a,ﬁl,ﬁg, v) = Asin asin 31 cos Bs + h%, (148)

Y L . w
TN (a,ﬂl,ﬂg, ) = Asin asin (1 sin (5 cos B3 — h—77
v v
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Q
TsN (a,ﬂl,527 ) = Asin asin (1 sin (s sin B3+
v

+h%, h=hy >0, v#0.

This shows that in the problem considered, there is an ad-
ditional damping (but accelerating in certain domains of the
phase space) moment of a nonconservative force (i.e., there is
a dependence of the moment on the components of the tensor
of angular velocity). Moreover, ho = hs = hqy = hs due to
the dynamical symmetry of the body.

In this case, the functions T, (a,f1, 3, 0s,Q/v),
Ay s (o, b1, 02,083, Q/v),s = 1,2,3, in system (61)-(68)
have the following form:

Q h
Fi) <a7517ﬂ27ﬂ37) :Asina——z4,
v v

h

Q
A'U,l (aaﬂhﬁQa ﬁSa ) = —Z3, (149)
v v

Q h
AU,Q (aaﬁlvﬁQaﬁ?n) = — X2,
v v

Q h
AU,B <Oé,517ﬂ2,/83,) = —Z1.
v v

Then, due to the nonintegrable constraint (38), outside the
manifold (60) the dynamical part of the equations of motion
(system (61)—(68)) takes the form of the analytic system

Bh AB
a<1+212)z41+03[21)sina, (150)
. ABv? |
Zy = sin o cos a—
YA
oBh cosa  Bhv
. ocBh cos o
Zz3= |1+ Z324———+
315 sin «v
oBh cosacos3y Bhv
1 2, .2 — 152
+( META )( TPR) e g, g 2 (159

. ( th) cos o
Zo= |1+ 2924 —

315 sin o
_ (1 +

(14 oBh 20080 1 cosf Bhv
3, ) 'sinasinf sinf, 3L

. ocBh COS &
Z1=(1+ 24— —
315 sin o

_ 1+th s
37, 123

ocBh cos a cos 31
315 273 §in o sin 01

zo cosa, (153)

cos a cos 31

sin v sin (3q

Br=(1+ oBh 3C?Sa7 (155)
31> sin «v
; ocBh CoS &
=- ! 156
62 < + 3]2 ) z2 sin o sin 517 ( )
; ocBh cos &
%= (1 31, ) A Snasin By sin By (157)

Introducing the dimensionless variables, parameters, and the

differentiation as follows:

AB

7k:17273347 2:77

ZE > N2 ng 30,
Bh

3[277/0 ’

we reduce system (150)—(157) to the form

(158)

b=ong, H = < >=ngv <>,

o = —(1+bHy) 24 + bsina, (159)

! .
Z4 = SmMaCosv—

COS &
— (14 bHy) (27 4 22 + 22)

- — Hizgcosa,  (160)
sin «v
2, = (1+bHy) P e

sin o

+ (14 bHY) (z% +Z§)cosa cos 31

— Hyzzcosa, (161)

sin « sin (1
cos

b= (1+bH -
= (+ 1)Zzzzlsina

cos « cos (31

— (1 + le) 2923

sin «v sin (31

1 cosfs
sin « sin 37 sin Gy

COS &«
— (14 bHy) Z%

— Hizpcosa, (162)

OS v

"~ (1+bH cosa
A1 (+ 1)le4sinoz

cos « ¢cos (31

— (]. + le) Z1%3

sin ¢ sin

cos o
sin « sin 31 sin By

cosa 1

+ (14 bHy) 2129 — Hyz cosa,

(163)

COS &
By = (1+bH;)z3—

sina’
cos o

(164)

By =—(1+bH) 2 (165)

sin asin By’
cos o

By = (1+bH1) = (166)

sin asin By sin B

We see that the eighth-order system (159)-(166) (which
can be considered on the tangent bundle 7'S* of the four-
dimensional sphere S*), contains an independent seventh-order
system (159)—(165) on its own seven-dimensional manifold.

For the complete integration of system (159)—(166), we
need, in general, seven independent firs integrals. However,
after the change of variables

z w.
1y ocBh cosa 1 cospfs 4 4
212 — : )
31 "2 Sina sin (1 sin (B Z3 . w3
V) wa ’
Bhv
B 31 Freosa, (154) 21 w1
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wy = z4, w3 =/ 2% + 25 + 23,

wy =2, wy = e (167)
21 21 + 25
system (159)—(166) splits as follows:
o = —(1+bHy)wy + bsina, (168)

_ cos a
w) = sinacosa — (14 bH; w3 —
sin

— Hywy cos a, (169)

cos
— Hyws cos a,
«

’LUé = (14 bH;)wswy (170)

wy = da(wy, w3, w2, wy; o, P, P2, B3) X
1+ w32 cos (o
wy sinBy’
By = da(ws, ws, we, wi; a, By, Pa, Bs),

X

(171)

wll - dl(w4aw37w27w1;a7517ﬁ27ﬂ3)x
1+ w? cos By
w;  sinB’
61 = dl(”LU4,UJ3,’(Ug,wl;()é,ﬁl,ﬁg,ﬂg),

X

(172)

ﬁ{/’, :d3('LU4,IU3,U}2,’U)1;Oé,ﬁl,ﬂQ,ﬁ?,), (173)

where

dl(w47w37w2a wi; a7/817527/83) =

cos a
= (1 + bH1)Z3(w4, w3, w2, w)

sina’
da(wy, w3, wo, wr; a, B, B, f3) =

COS (&
= —(1+bH1)Zo(ws, w3, wa, wr)

(174)
sinasin 81’
d3(wy, w3, we,wi; o, B1, B2, f3) =

COS @
= (1 + bH1)Z1 (wa, w3, wa, wi)

sin asin B sin By’

herewith,

2 = Zi(wy, w3, wo,wy), k=1,2,3, (175)

are the functions, due to the change of variables (167).

We see that the eighth-order system splits into independent
subsystems of lower orders: system (168)—(170) of order 3
and each of system (171), (172) (certainly, after a choice of
the independent variables) of order 2. Thus, for the complete
integration of system (168)—(173), it suffice to fin two
independent firs integrals of system (168)—(170), one firs
integral of each system (171), (172), and an additional firs
integral that attaches Eq. (173).

Note that system (168)—(170) can be considered on the
tangent bundle T'S? of the two-dimensional sphere S2.

C. Complete list of invariant relation

System (168)—(170) has the form of a system of equations
that appears in the dynamics of a three-dimensional (3D—)
rigid body in a nonconservative field

ISBN: 978-1-61804-287-3

First, to the third-order system (168)—(170), we put in
correspondence the nonautonomous second-order system

dw4 o

da

_ sinacosa — (1+bHy)w3 cosa/sino — Hywy cos a
—(14+bHy)wy + bsina

)

dws

doa

(1 +bHy)wzwy cos o/ sina — Hyws cos o
B —(1+bH;)ws + bsina '

(176)
Using the substitution 7 = sin a, we rewrite system (176)
in the algebraic form:

dwy - (1+ bH1)w3 /T — Hiwy

dr (14 bH )ws+br a7
dw3 _ (1+bH1)w3w4/T—le3

dr —(1+bH)wy +br

Further, introducing the homogeneous variables by the for-
mulas
W3 = U1T, Wq = U2T,

(178)
we reduce system (177) to the following form:

dus 1— (1 + le)uf — Hiug
T— +Ug = s
dT —(1+bH1)U2+b
(1 + le)’U,ﬂLg — Hiuy

—(1 + le)UQ +b

1
o (179)

T Uy =
dr

which is equivalent to

] (1+bH1)(u§—u%)—(b+H1)u2+1
dT —(1+bH1)U2+b ’
T% - 2(1+bH1)U1U2—(b+H1)U1
dr —(1 4 bHy)ug +b

dUQ

(180)

To the second-order system (180), we put in correspondence
the nonautonomous first-orde equation
1—(1+bHy)(u? —ud) — (b+ Hy)us

2(1+bH1)U1U2 — (b+H1)’LL1 ’

duy _
dul_

(181)

which can be easily reduce to the exact-differential form:

p <(1 + bHy)(u +u?) — (b+ Hy)ug + 1
Uy

> =0. (182)

Thus, Eq. (181) has the following firs integral:

(14 0bH:)(u3 +u}) — (b+ Hi)ug +1

Uy
= C = const, (183)
which in the original variables has the form
(1+bH) (w3 +w3) — (b+ Hy)wssina +sin®a
ws sin «
= (1 = const. (184)
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Remark 3. Consider system (168)—(170) with variable
dissipation with zero mean, which becomes conservative for
b= Hli

o = —(1+b*)wy + bsina,

. cos a
w) = sinacosa — (1 + b*)w3 — bwy cos a,
a

(185)

wh = (1 + b*)wsw, s e

- — bws cos .
sin «v

It possesses the following two analytic firs integrals:
(14-0%) (w3 +w3) — 2bw, sin a+sin? a = C} = const, (186)

wssina = C5 = const. (187)

Obviously, the ratio of the two firs integrals (186), (187) is
also a firs integral of system (185). But for b # H; none of
the functions

(1 +bH;)(w? 4+ w3) — (b+ Hy)wysina +sin . (188)

and (187) is a firs integral of system (168)—(170). However,
the ratio of the functions (188), (187) is a firs integral of
system (168)—(170) for any b, H;.

We fin the explicit form of the additional firs integral of
the third-order system (168)—(170). First, we transform the
invariant relation (183) for u; # 0 as follows:

CobkH N G
Y2750 1 oY) o0t em))

(b—H)?+C?—4 (189)
- 4(l+bH))2

We see that the parameters of this invariant relation must
satisfy the condition

(b— Hy)2+C2—4>0,

(190)

and the phase space of system (168)—(170) is stratifie into
the family of surfaces define by Eq. (189).
Thus, due to relation (183), the firs equation of system

(180) has the form
dUQ

=
. 2(1 —+ le)U% — 2(b+ Hl)’ug +2— ClUl(Cl,UQ)
B b—(1+bH1)U2 ’

(191)
where
1
Ui (Cy,uz) = m{cl + Us(Ch,u2)}, (192)
Ua(Cr,u2) =

= /O — 41+ bHY)(1 — (b + Hy)ug + (1 + bHy)ud),

and the integration constant C is define by condition (190).
Therefore, the quadrature for the search for an additional
firs integral of system (168)—(170) becomes

Obviously, the left-hand side (up to an additive constant) is
equal to

In | sin a. (194)

If
__b+H
2(1+ bH;)

then the right-hand side of Eq. (193) becomes
1 d(b? — 4(1 + bHy)r?)
4 / (b2 — A(1 + bHy )r2) + C1 /03 — 4(1 + bH1)r?
—(b— Hy)(1+bHp)x
></ dry _
(b3 —4(1 + bHy)r?) £ C1/03 — 4(1 + bHy)r?
Vb2 —4(1+bH))
Gy

=11, bf = (b—H1)* +CF —4, (195)

U2

b—H,;

2
"4 .

+

Iy, (196)

1
=—=1In
2

where

d’l”g
Il :/ )
Vb3 —1r3(rs £CY)
rs = /63 — 4(1 + bH)r2.

In the calculation of integral (197), the following three cases
are possible:

(197)

I. |b— Hy| > 2.
Ilz— ! X
2¢/(b—Hy)? -4
— 2 _ 7 _ .2
< 1n V(b —Hi)? =4+ /b 3y Ch L
7'3:|:Cl (b—H1)2—4
+ ! X
2¢/(b—Hy)? -4
x In V(b —H)? —4— /b 13 C1 n
r3 £ Ch (b—Hy)2 —4
+const. (198)
1. |b—H1‘ < 2.
1 + b?
I, = ————arcsin % + const.  (199)
4—(b— Hp)? bi(rs = C1)
. |b—Hy| =2
N
L=F1 3 t. 200
! :FCl(rgiC’l) +cons ( )
Returning to the variable
b+ H
rp = 23 + Hy (201)

" sina 2(1+bHy)’

dl _ we have the following fina form of I:
T l. |b — Hl‘ > 2.
_ 1
:/ . (b (1+bH1)U2)dU2 ’ (193) Il — . %
2A —01{01ﬂ:UQ(Ol,ug)}/(Q(l—i-le)) 2 (b*Hl) 74
ISBN: 978-1-61804-287-3 340
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«1 (b—H1)2 —4i2(1—|—bH1)T1 Cl i
n
Vb —4(1+bH )2r? £ C4 (b—Hy)2—4
+ L X
2\/(b—H)2—4
(b—H1)2 —4:!:2(1—1—1)]‘[1)7“1 4
x In 2 2 2 +
Vb —4(1+bH )2r? £ C4 (b—Hy)2—4
+-const. (202)
. |b— Hy| <2
L=—— 1
4—(b—Hy)?
+C1/0? — 4(1 + bH,)2r? 4 b3
X arcsin Cr/bf — AL+ bH, )} + b7 + const.  (203)
bi (/b3 — 4(1 + bHy)?r? £ Cy)
N |b— Hy|=2.
2(1 +bH
L (1 +bHur T const.  (204)

=F
C1 (/03 —4(1 +bH,)2r? £ C))

Thus, we have found an additional firs integral for the third-
order system (168)—(170) and we have the complete set of
firs integrals that are transcendental functions of their phase
variables.

Remark 4. Formally, in the expression of the found firs
integral, we must substitute instead of C; the left-hand side
of the firs integral (183).

Then the obtained additional firs integral has the following
structure (similar to the transcendental firs integral from
planar dynamics):

W4y w3

In|sina| + G (sin a, ) = (Cy = const. (205)

sina’ sina

Thus, to integrate the eighth-order system (168)—(173), we
have already found two independent firs integrals. For the
complete integration, as was mentioned above, it suffice to
fin one firs integral for each (potentially separated) system
(171), (172), and an additional firs integral that attaches Eq.
(173).

To fin a firs integral of each (potentially separated) system
(171), (172), we put in correspondence the following nonau-
tonomous first-orde equation:

dws 1+ w? cos B
g, sin 3’

After integration we obtain the required invariant relation

V1+w?
sin B
Further, to obtain an additional firs integral that attaches

Eq. (173), to Egs. (173) and (171) we put in correspondence
the following nonautonomous equation:

s=1,2.

(206)

Ws

= Cs49 = const, s = 1,2. (207)

d’U.)Q 2
— =—(1 . 208
dﬁS ( + wQ) Cos /82 ( )
Since
Cycos e = +4/C3 — 1 — w3, (209)
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by (207), we have

d’LU2 -

1
2 (1 wd)y /02— 1wl
TN :FC4( +w3)4/C3 w3

Integrating this relation, we arrive at the following quadra-
ture:

(210)

C4d’w2
o= |
S TR N e
Cs = const. (211)
Integration leads to the relation
C
Ftg(Bs + C5) = 412 , Cs =const.  (212)

VO3 —1—w?
Finally, we have the following additional firs integral that
attaches Eq. (173):

% + B3 = C5, Cs = const.
VCF —1—w?
Thus, in the case considered, the system of dynamical equa-
tions (17)—(21), (24)—(33) under condition (148) has twelve
invariant relations: the analytic nonintegrable constraint of the
form (38), the cyclic firs integrals of the form (36) and (37),
the firs integral of the form (184), the firs integral expressed
by relations (198)—(205), which is a transcendental function
of the phase variables (in the sense of complex analysis)
expressed through a finit combination of functions, and the
transcendental firs integrals of the form (207) and (213).
Theorem 3. System (17)—(21), (24)—(33) under conditions
(38), (148), (37) possesses twelve invariant relations (complete
set); five of them are transcendental functions from the point of
view of complex analysis. All relations are expressed through
finite combinations of elementary functions.

arctg (213)

D. Topological analogies

Consider the following seventh-order system:

£+ (by — Hl*)écosg + sin & cos E—
sin{

cosé
1+4cos?¢
cossiné B

— (1722 4 1j32 sin? my) sinmy cos . = 0,

1+ cos?¢
cos € siné

— [ 4 1j22 sin? n1 + 1j3% sin® 1y sin® 7]

)

it + (b — Hy)nji cos € +

tiz + (bs — Hyu)1j2 cos € + o
cos

(214)

+ 20112 — L _ i3 sinnz cosna = 0,
sin my
1+ cos? ¢

.. b* _H . . M . 7.
13+ ( 1 )U3COS£+€n3cos§sm§

Cos 11

+ 21173 —
sin

b, >0, Hy, > 0.

This system describes a fi ed fve-dimensional pendulum in
a fl w of a running medium for which the moment of forces
depends on the angular velocity, i.e., a mechanical system in
a nonconservative field Generally speaking, the order of this
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system must be equal to 8, but the phase variable 73 is a cyclic
variable, which leads to the stratificatio of the phase space
and reduced the order of the system.

The phase space of this system is the tangent bundle

ng{é7ﬁla77.2a7].37§777177727773} (215)

of the four-dimensional sphere S*{&, 11, 72,713 }. The equation
that transforms system (140) into the system on the tangent
bundle of the three-dimensional sphere

73 =0, (216)
and the equations of great circles
=0, 12 =0, s =0 (217)

defin families of integral manifolds.

It is easy to verify that system (214) is equivalent to the
dynamical system with variable dissipation with zero mean
on the tangent bundle (215) of the four-dimensional sphere.
Moreover, the following theorem holds.

Theorem 4. System (17)—(21), (24)—(33) under condition
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Indeed, it suffice to set a« =&, By =m, P2 =12, B3 =
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VI. CONCLUSION

In the previous studies of the author, the problems on the
motion of the lower-dimensional solid were already consid-
ered in a nonconservative force fiel in the presence of the
following force. This study opens a new cycle of works on
integration of a multidimensional solid in the nonconservative
fiel because previously, as was already specified we consid-
ered only such motions of a solid when the fiel of external
forces was the potential.
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