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Abstract—This paper is a survey of integrable cases in dy-
namics of a five-dimensional rigid body under the action of a
nonconservative force field. We review both new results and
results obtained earlier. Problems examined are described by
dynamical systems with so-called variable dissipation with zero
mean.

The problem of the search for complete sets of transcendental
first integrals of systems with dissipation is quite actual; a large
number of works are devoted to it. We introduce a new class of
dynamical systems that have a periodic coordinate. Due to the
existence of a nontrivial symmetry groups of such systems, we
can prove that these systems possess variable dissipation with
zero mean, which means that on the average for a period with
respect to the periodic coordinate, the dissipation in the system
is equal to zero, although in various domains of the phase space,
either the energy pumping or dissipation can occur. Based on
facts obtained, we analyze dynamical systems that appear in
dynamics of a five-dimensional rigid body and obtain a series of
new cases of complete integrability of the equations of motion in
transcendental functions that can be expresses through a finite
combination of elementary functions.

Index Terms—Case of integrability, dynamic part of motion
equations, multidimensional rigid body.

I. INTRODUCTION

T HIS This paper is a survey of integrable cases in dy-
namics of a f ve-dimensional rigid body under the action

of a nonconservative force field We review both new results
and results obtained earlier. Problems examined are described
by dynamical systems with so-called variable dissipation with
zero mean.
We study nonconservative systems for which usual methods

of the study of Hamiltonian system is inapplicable. Thus, for
such systems, we must directly integrate the main equation of
dynamics (see also [1], [2], [3], [4], [5], [6]).
We generalize previously known cases and obtain new cases

of the complete integrability in transcendental functions of the
equation of dynamics of a f ve-dimensional rigid body in a
nonconservative force field
Of course, in the general case, the construction of a the-

ory of integration of nonconservative systems (even of low
dimension) is a quite difficul task. In a number of cases,
where the systems considered have additional symmetries, we
succeed in findin firs integrals through finit combinations
of elementary functions [6], [7], [8], [9].

Maxim V. Shamolin is with the Institute of Mechanics, Lomonosov
Moscow State University, Moscow, 119192, Russian Federation;
e-mail: shamolin@rambler.ru, shamolin@imec.msu.ru (see also
http://shamolin2.imec.msu.ru).

In basic part we recall general aspects of the dynamics of a
free multi-dimensional rigid body: the notion of the tensor of
angular velocity of the body, the joint dynamical equations of
motion on the direct product Rn × so(n), and the Euler and
Rivals formulas in the multi-dimensional case.
We also consider the tensor of inertia of a f ve-dimensional

(5D−) rigid body. In this work, we study one of two possible
cases in which there exists two relations between the principal
moments of inertia:

(i) there are four equal principal moments of inertia (I2 =
I3 = I4 = I5).
Furthermore, we systematize results on the study of equa-

tions of motion of a f ve-dimensional (5D−) rigid body in a
nonconservative force fiel for the case (i). The form of these
equations is taken from the dynamics of realistic rigid bodies
of lesser dimension that interact with a resisting medium by
laws of jet fl w when the is influence by a nonconservative
tracing force. Under the action of this force, the following
two cases are possible. In this case, the velocity of some
characteristic point of the body remains constant, which means
that the system possesses a nonintegrable servo-constraint (see
also [10], [11]).
The results relate to the case where all interaction of the

medium with the body part is concentrated on a part of the
surface of the body, which has the form of a four-dimensional
disk, and the action of the force is concentrated in the direction
perpendicular to this disk. These results are systematized and
are preserved in the invariant form. Moreover, we introduce
an extra dependence of the moment of the nonconservative
force on the angular velocity. This dependence can be further
extended to cases of the motion in spaces of higher dimension.
Many results of this paper were regularly presented on

scientifi seminars, including the seminar Actual problems of
geometry and mechanics named after Prof. V. V. Trofim v un-
der the supervision of D. V. Georgievskii and M. V. Shamolin.
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II. GENERAL DISCOURSE

A. Cases of dynamical symmetry of a five-dimensional body

Let a f ve-dimensional rigid body Θ of mass m with smooth
four-dimensional boundary ∂Θ be under the influenc of a
nonconservative force field this can be interpreted as a motion
of the body in a resisting medium that fill up f ve-dimensional
domain of Euclidean space E5. We assume that the body
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is dynamically symmetric. If the body has two independent
principal moments of inertia, then in some coordinate system
Dx1x2x3x4x5 attached to the body, the operator of inertia has
the form

diag{I1, I2, I2, I2, I2}, (1)

or the form
diag{I1, I1, I3, I3, I3}. (2)

In the firs case, the body is dynamically symmetric in the
hyperplane Dx2x3x4x5.

B. Dynamics on so(5) and R5

The configuratio space of a free, n-dimensional rigid body
is the direct product

Rn × SO(n) (3)

of the space Rn, which define the coordinates of the center
of mass of the body, and the rotation group SO(n), which
define rotations of the body about its center of mass and has
dimension

n +
n(n− 1)

2
=

n(n + 1)
2

.

Therefore, the dynamical part of equations of motion has
the same dimension, whereas the dimension of the phase space
is equal to

n(n + 1).

In particular, if Ω is the tensor of angular velocity of a f ve-
dimensional rigid body (it is a second-rank tensor, see [12],
[13], [14], [15], [16]), Ω ∈ so(5), then the part of dynamical
equations of motion corresponding to the Lie algebra so(5)
has the following form (see [17], [18]):

Ω̇Λ + ΛΩ̇ + [Ω, ΩΛ + ΛΩ] = M, (4)

where
Λ = diag{λ1, λ2, λ3, λ4}, (5)

λ1 =
−I1 + I2 + I3 + I4 + I5

2
,

λ2 =
I1 − I2 + I3 + I4 + I5

2
,

λ3 =
I1 + I2 − I3 + I4 + I5

2
,

λ4 =
I1 + I2 + I3 − I4 + I5

2
,

λ5 =
I1 + I2 + I3 + I4 − I5

2
,

M = MF is the natural projection of the moment of external
forces F acting to the body in R5 on the natural coordinates
of the Lie algebra so(5), and [ ] is the commutator in so(5).
The skew-symmetric matrix corresponding to this second-rank
tensor Ω ∈ so(5) we represent in the form




0 −ω10 ω9 −ω7 ω4

ω10 0 −ω8 ω6 −ω3

−ω9 ω8 0 −ω5 ω2

ω7 −ω6 ω5 0 −ω1

−ω4 ω3 −ω2 ω1 0




, (6)

where ω1, ω2, . . . , ω10 are the components of the tensor
of angular velocity corresponding to the projections on the
coordinates of the Lie algebra so(5).
Obviously, the following relations hold:

λi − λj = Ij − Ii (7)

for any i, j = 1, . . . , 5.
For the calculation of the moment of an external force acting

to the body, we need to construct the mapping

R5 ×R5 −→ so(5), (8)

than maps a pair of vectors

(DN, F) ∈ R5 ×R5 (9)

from R5 ×R5 to an element of the Lie algebra so(5), where

DN = {0, x2N , x3N , x4N , x5N},
F = {F1, F2, F3, F4, F5},

(10)

and F is an external force acting to the body. For this end, we
construct the following auxiliary matrix

(
0 x2N x3N x4N x5N

F1 F2 F3 F4 F5

)
. (11)

Then the right-hand side of system (4) takes the form

M = {x4NF5 − x5NF4, x5NF3 − x3NF5,

x2NF5 − x5NF2, x5NF1, x3NF4 − x4NF3,

x4NF2 − x2NF4,−x4NF1, x2NF3 − x3NF2,

x3NF1,−x2NF1}. (12)

Dynamical systems studied in the following, generally
speaking, are not conservative; they are dynamical systems
with variable dissipation with zero mean (see [12]). We need
to examine by direct methods a part of the main system of
dynamical equations, namely, the Newton equation, which
plays the role of the equation of motion of the center of mass,
i.e., the part of the dynamical equations corresponding to the
space R5:

mwC = F, (13)

where wC is the acceleration of the center of mass C of
the body and m is its mass. Moreover, due to the higher-
dimensional Rivals formula (it can be obtained by the operator
method) we have the following relations:

wC = wD +Ω2DC+EDC, wD = v̇D +ΩvD, E = Ω̇, (14)

where wD is the acceleration of the point D, F is the external
force acting on the body (in our case, F = S), and E is the
tensor of angular acceleration (second-rank tensor).
So, the system of equations (4) and (13) of fifteent order

on the manifold R5 × so(5) is a closed system of dynamical
equations of the motion of a free f ve-dimensional rigid body
under the action of an external force F. This system have been
separated from the kinematic part of the equations of motion
on the manifold (3) and can be examined independently.
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III. GENERAL PROBLEM ON THE MOTION UNDER A
TRACING FORCE

Consider a motion of a homogeneous, dynamically sym-
metric (case (1)), rigid body with front end face (a four-
dimensional disk interacting with a medium that fill the f ve-
dimensional space) in the fiel of a resistance force S under
the quasi-stationarity conditions.
Let (v, α, β1, β2, β3) be the (generalized) spherical coor-

dinates of the velocity vector of the center of the four-
dimensional disk lying on the axis of symmetry of the body,

Ω =




0 −ω10 ω9 −ω7 ω4

ω10 0 −ω8 ω6 −ω3

−ω9 ω8 0 −ω5 ω2

ω7 −ω6 ω5 0 −ω1

−ω4 ω3 −ω2 ω1 0




be the tensor of angular velocity of the body, Dx1x2x3x4x5

be the coordinate system attached to the body such that the
axis of symmetry CD coincides with the axis Dx1 (recall that
C is the center of mass), and the axes Dx2, Dx3, Dx4, Dx5

lie in the hyperplane of the disk, and I1, I2, I3 = I2, I4 =
I2, I5 = I2, m are characteristics of inertia and mass.
We adopt the following expansions in the projections to the

axes of the coordinate system Dx1x2x3x4x5:

DC = {−σ, 0, 0, 0, 0},
vD = {v cos α, v sin α cos β1, v sin α sin β1 cosβ2,

v sin α sin β1 sin β2 cos β3, v sin α sin β1 sin β2 sin β3}. (15)

In the case (1) we additionally have the expansion for
the function of the influenc of the medium on the f ve-
dimensional body:

S = {−S, 0, 0, 0, 0}, (16)

i.e., in this case F = S.
Then the part of the dynamical equations of motion (includ-

ing the analytic Chaplygin functions; see below) that describes
the motion of the center of mass and corresponds to the space
R5, in which tangent forces of the influenc of the medium
on the four-dimensional disk vanish, takes the form

v̇ cos α−α̇v sin α−ω10v sin α cosβ1+ω9v sin α sin β1 cos β2−
−ω7v sinα sin β1 sin β2 cos β3+ω4v sin α sin β1 sinβ2 sinβ3+

+σ(ω2
10 + ω2

9 + ω2
7 + ω2

4) = − S

m
, (17)

v̇ sinα cos β1 + α̇v cosα cosβ1 − β̇1v sinα sin β1+

+ω10v cosα− ω8v sin α sin β1 cos β2+

+ω6v sin α sin β1 sin β2 cosβ3−
−ω3v sin α sin β1 sin β2 sin β3−

−σ(ω9ω8 + ω6ω7 + ω3ω4)− σ ˙ω10 = 0, (18)

v̇ sin α sinβ1 cosβ2 + α̇v cosα sin β1 cos β2+

+β̇1v sin α cosβ1 cos β2−

−β̇2v sin α sin β1 sin β2 − ω9v cos α + ω8v sin α cos β1−
−ω5v sin α sin β1 sin β2 cosβ3+

+ω2v sin α sin β1 sin β2 sin β3−
−σ(ω8ω10 − ω5ω7 − ω2ω4) + σω̇9 = 0, (19)

v̇ sin α sin β1 sin β2 cosβ3 + α̇v cos α sin β1 sin β2 cos β3+

+β̇1v sin α cos β1 sin β2 cosβ3+

+β̇2v sin α sin β1 cos β2 cosβ3−
−β̇3v sin α sin β1 sin β2 sin β3+ω7v cosα−ω6v sinα cos β1+

+ω5v sin α sinβ1 cosβ2 − ω1v sin α sinβ1 sinβ2 sinβ3+

+σ(ω6ω10 + ω5ω9 − ω1ω4)− σω̇7 = 0, (20)

v̇ sin α sin β1 sin β2 sin β3 + α̇v cos α sin β1 sin β2 sin β3+

+β̇1v sin α cos β1 sin β2 sin β3+

+β̇2v sin α sin β1 cos β2 sin β3+

+β̇3v sin α sin β1 sin β2 cosβ3−ω4v cos α+ω3v sinα cos β1−
−ω2v sinα sin β1 cos β2 + ω1v sinα sin β1 sin β2 cos β3−

−σ(ω3ω10 + ω2ω9 + ω1ω7) + σω̇4 = 0, (21)

where
S = s(α)v2, σ = CD, v > 0. (22)

Further, the auxiliary matrix (11) for the calculation of the
moment of the resistance force has the form(

0 x2N x3N x4N x5N

−S 0 0 0 0

)
, (23)

then the part of the dynamical equations of motion that
describes the motion of the body about the center of mass
and corresponds to the Lie algebra so(5), becomes

(λ4 + λ5)ω̇1 + (λ4 − λ5)(ω4ω7 + ω3ω6 + ω2ω5) = 0, (24)

(λ3 + λ5)ω̇2 + (λ5 − λ3)(ω1ω5 − ω3ω8 − ω4ω9) = 0, (25)

(λ2 + λ5)ω̇3 + (λ2 − λ5)(ω4ω10 − ω2ω8 − ω1ω6) = 0, (26)

(λ1 + λ5)ω̇4 + (λ5 − λ1)(ω3ω10 + ω2ω9 + ω1ω7) =

= −x5N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (27)

(λ3 + λ4)ω̇5 + (λ3 − λ4)(ω7ω9 + ω6ω8 + ω1ω2) = 0, (28)

(λ2 + λ4)ω̇6 + (λ4 − λ2)(ω5ω8 − ω7ω10 − ω1ω3) = 0, (29)

(λ1 + λ4)ω̇7 + (λ1 − λ4)(ω1ω4 − ω6ω10 − ω5ω9) =

= x4N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (30)

(λ2 + λ3)ω̇8 + (λ2 − λ3)(ω9ω10 + ω5ω6 + ω2ω3) = 0, (31)

(λ1 + λ3)ω̇9 + (λ3 − λ1)(ω8ω10 − ω5ω7 − ω2ω4) =

= −x3N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (32)

(λ1 + λ2)ω̇10 + (λ1 − λ2)(ω8ω9 + ω6ω7 + ω3ω4) =
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= x2N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2. (33)

Thus, the phase space of system (17)–(21), (24)–(33) of
fifteent order is the direct product of the f ve-dimensional
manifold and the Lie algebra so(5):

R1 × S4 × so(5). (34)

We note that system (17)–(21), (24)–(33), due to the existing
dynamical symmetry

I2 = I3 = I4 = I5, (35)

possesses cyclic firs integrals

ω1 ≡ ω0
1 , ω2 ≡ ω0

2 , ω3 ≡ ω0
3 , ω5 ≡ ω0

5 , ω6 ≡ ω0
6 , ω8 ≡ ω0

8 .
(36)

In the sequel, we consider the dynamics of the system on
zero levels:

ω0
1 = ω0

2 = ω0
3 = ω0

5 = ω0
6 = ω0

8 = 0. (37)

If one considers a more general problem on the motion of
a body under a tracing force T that lies on the straight line
CD = Dx1 and provides the fulfillmen of the relation

v ≡ const (38)

throughout the motion, then instead of F1 system (17)–(21),
(24)–(33) contains

T − s(α)v2, σ = DC. (39)

Choosing the value T of the tracing force appropriately, one
can achieve the equality (38) throughout the motion. Indeed,
expressing T due to system (17)–(21), (24)–(33), we obtain
for cosα 6= 0 the relation

T = Tv(α, β1, β2, β3,Ω) = mσ(ω2
4 + ω2

7 + ω2
9 + ω2

10)+

+s(α)v2

[
1− mσ

3I2

sin α

cosα
Γv

(
α, β1, β2, β3,

Ω
v

)]
, (40)

where
Γv

(
α, β1, β2, β3,

Ω
v

)
=

= x5N

(
α, β1, β2, β3,

Ω
v

)
sin β1 sin β2 sin β3+

+x4N

(
α, β1, β2, β3,

Ω
v

)
sin β1 sin β2 cos β3+

+x3N

(
α, β1, β2, β3,

Ω
v

)
sin β1 cosβ2+

+x2N

(
α, β1, β2, β3,

Ω
v

)
cos β1; (41)

here we used conditions (36)–(38).
This procedure can be interpreted in two ways. First, we

have transformed the system using the tracing force (control)
that provides the consideration of the class (38) of motions in-
teresting for us. Second, we can treat this as an order-reduction
procedure. Indeed, system (17)–(21), (24)–(33) generates the
following independent system of eighth order:

α̇v cos α cos β1 − β̇1v sin α sin β1+

+ω10v cos α− σ ˙ω10 = 0, (42)

α̇v cos α sin β1 cosβ2 + β̇1v sin α cos β1 cosβ2−
−β̇2v sin α sin β1 sin β2 − ω9v cos α + σω̇9 = 0, (43)

α̇v cos α sin β1 sin β2 cosβ3 + β̇1v sin α cos β1 sin β2 cosβ3+

+β̇2v sin α sin β1 cos β2 cosβ3−
−β̇3v sinα sin β1 sin β2 sin β3 + ω7v cosα− σω̇7 = 0, (44)

α̇v cos α sin β1 sin β2 sin β3 + β̇1v sin α cos β1 sin β2 sin β3+

+β̇2v sin α sin β1 cos β2 sin β3+

+β̇3v sin α sin β1 sin β2 cosβ3 − ω4v cos α + σω̇4 = 0, (45)

3I2ω̇4 = −x5N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (46)

3I2ω̇7 = x4N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (47)

3I2ω̇9 = −x3N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (48)

3I2ω̇10 = x2N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (49)

which, in addition to the permanent parameters specifie
above, contains the parameter v.
System (42)–(49) is equivalent to the system

α̇v cos α + v cosα{ω10 cosβ1+

+[(ω7 cos β3 − ω4 sin β3) sin β2 − ω9 cos β2] sin β1}+
+σ{− ˙ω10 cosβ1 + [ω̇9 cos β2−

−(ω̇7 cosβ3 − ω̇4 sinβ3) sin β2] sin β1} = 0, (50)

β̇1v sin α + v cos α{[(ω7 cosβ3−
−ω4 sin β3) sin β2 − ω9 cos β2] cos β1 − ω10 sin β1}+

+σ{[ω̇9 cosβ2 − (ω̇7 cosβ3−
−ω̇4 sinβ3) sin β2] cos β1 + ˙ω10 sin β1} = 0, (51)

β̇2v sin α sin β1 + v cosα{[ω7 cos β3−
−ω4 sin β3] cos β2 + ω9 sin β2}+

+σ {− [ω̇7 cosβ3 − ω̇4 sinβ3] cos β2 − ω̇9 sin β2} = 0, (52)

β̇3v sin α sin β1 sin β2 + v cosα {−ω4 cos β3 − ω7 sin β3}+

+σ {ω̇4 cosβ3 + ω̇7 sin β3} = 0, (53)

ω̇4 = − v2

3I2
x5N

(
α, β1, β2, β3,

Ω
v

)
s(α), (54)

ω̇7 =
v2

3I2
x4N

(
α, β1, β2, β3,

Ω
v

)
s(α), (55)

ω̇9 = − v2

3I2
x3N

(
α, β1, β2, β3,

Ω
v

)
s(α), (56)

ω̇10 =
v2

3I2
x2N

(
α, β1, β2, β3,

Ω
v

)
s(α). (57)
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Introduce the new quasi-velocities. For this, we transform
ω4, ω7, ω9, ω10 by three rotations:




z1

z2

z3

z4




=

= T3,4(−β1) ◦ T2,3(−β2) ◦ T1,2(−β3)




ω4

ω7

ω9

ω10




, (58)

where

T3,4(β) =




1 0 0 0
0 1 0 0
0 0 cos β − sin β

0 0 sin β cos β




,

T2,3(β) =




1 0 0 0
0 cos β − sin β 0
0 sin β cos β 0
0 0 0 1




,

T1,2(β) =




cosβ − sin β 0 0
sin β cos β 0 0

0 0 1 0
0 0 0 1




.

Therefore, the following relations hold:

z1 = ω4 cos β3 + ω7 sin β3,

z2 = (ω7 cosβ3 − ω4 sin β3) cos β2 + ω9 sinβ2,

z3 = [(−ω7 cosβ3 + ω4 sin β3) sin β2+
+ ω9 cosβ2] cos β1 + ω10 sin β1,

z4 = [(ω7 cos β3 − ω4 sin β3) sin β2−
− ω9 cosβ2] sin β1 + ω10 cos β1.

(59)

As we see from (50)–(57), we cannot solve the system with
respect to α̇, β̇1, β̇2, β̇3 on the manifold

O1 = {(α, β1, β2, β3, ω4, ω7, ω9, ω10) ∈ R8 :

α =
π

2
k, β1 = πl1, β2 = πl2, k, l1, l2 ∈ Z}. (60)

Therefore, on the manifold (60) the uniqueness theorem for-
mally is violated. Moreover, for even k and any l1, l2, an
indeterminate form appears due to the degeneration of the
spherical coordinates (v, α, β1, β2, β3). For odd k, the unique-
ness theorem is obviously violated since the firs equation (50)
degenerates.
This implies that system (50)–(57) outside (and only out-

side) the manifold (60) is equivalent to the system

α̇ = −z4 +
σv

3I2

s(α)
cosα

Γv

(
α, β1, β2, β3,

Ω
v

)
, (61)

ż4 =
v2

3I2
s(α)Γv

(
α, β1, β2, β3,

Ω
v

)
−

−(z2
1 + z2

2 + z2
3)

cos α

sinα
+

+
σv

3I2

s(α)
sin α

{−z3∆v,1

(
α, β1, β2, β3,

Ω
v

)
+

+z2∆v,2

(
α, β1, β2, β3,

Ω
v

)
−

−z1∆v,3

(
α, β1, β2, β3,

Ω
v

)
}, (62)

ż3 = z3z4
cos α

sin α
+ (z2

1 + z2
2)

cos α

sin α

cosβ1

sin β1
+

+
σv

3I2

s(α)
sin α

{z4∆v,1

(
α, β1, β2, β3,

Ω
v

)
−

−z2∆v,2

(
α, β1, β2, β3,

Ω
v

)
cosβ1

sin β1
+

+z1∆v,3

(
α, β1, β2, β3,

Ω
v

)
cosβ1

sin β1
}−

− v2

3I2
s(α)∆v,1

(
α, β1, β2, β3,

Ω
v

)
, (63)

ż2 = z2z4
cosα

sin α
− z2z3

cosα

sin α

cosβ1

sin β1
−

−z2
1

cos α

sin α

1
sin β1

cosβ2

sin β2
+

+
σv

3I2

s(α)
sin α

∆v,2

(
α, β1, β2, β3,

Ω
v

) {
−z4 + z3

cos β1

sin β1

}
+

+
σv

3I2

s(α)
sin α

∆v,3

(
α, β1, β2, β3,

Ω
v

) {
−z1

1
sin β1

cosβ2

sin β2

}
+

+
v2

3I2
s(α)∆v,2

(
α, β1, β2, β3,

Ω
v

)
, (64)

ż1 = z1z4
cosα

sin α
− z1z3

cosα

sin α

cosβ1

sin β1
+

+z1z2
cosα

sin α

1
sin β1

cosβ2

sin β2
+

+
σv

3I2

s(α)
sin α

∆v,3

(
α, β1, β2, β3,

Ω
v

)
×

×
{

z4 − z3
cosβ1

sin β1
+ z2

1
sin β1

cosβ2

sin β2

}
−

− v2

3I2
s(α)∆v,3

(
α, β1, β2, β3,

Ω
v

)
, (65)

β̇1 = z3
cos α

sin α
+

σv

3I2

s(α)
sin α

∆v,1

(
α, β1, β2, β3,

Ω
v

)
, (66)

β̇2 = −z2
cos α

sin α sinβ1
+

+
σv

3I2

s(α)
sin α sinβ1

∆v,2

(
α, β1, β2, β3,

Ω
v

)
, (67)
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β̇3 = z1
cosα

sin α sinβ1 sinβ2
+

+
σv

3I2

s(α)
sin α sin β1 sin β2

∆v,3

(
α, β1, β2, β3,

Ω
v

)
, (68)

where
∆v,1

(
α, β1, β2, β3,

Ω
v

)
=

= −x2N

(
α, β1, β2, β3,

Ω
v

)
sin β1+

+x3N

(
α, β1, β2, β3,

Ω
v

)
cosβ1 cos β2+

+x4N

(
α, β1, β2, β3,

Ω
v

)
cos β1 sin β2 cosβ3+

+x5N

(
α, β1, β2, β3,

Ω
v

)
cos β1 sin β2 sin β3,

∆v,2

(
α, β1, β2, β3,

Ω
v

)
=

= −x3N

(
α, β1, β2, β3,

Ω
v

)
sin β2+ (69)

+x4N

(
α, β1, β2, β3,

Ω
v

)
cosβ2 cos β3+

+x5N

(
α, β1, β2, β3,

Ω
v

)
cosβ2 sinβ3,

∆v,3

(
α, β1, β2, β3,

Ω
v

)
=

= −x4N

(
α, β1, β2, β3,

Ω
v

)
sin β3+

+x5N

(
α, β1, β2, β3,

Ω
v

)
cos β3,

and the function Γv (α, β1, β2, β3, Ω/v) can be represented in
the form (41).
Here and in the sequel, the dependence on the group

of variables (α, β1, β2, β3, Ω/v) is meant as the composite
dependence on (α, β1, β2, β3, z1/v, z2/v, z3/v, z4/v) due to
(59).
The uniqueness theorem for system (50)–(57) on the man-

ifold (60) for odd k violates in the following sense: for odd
k through almost all points of the manifold (60), passes a
nonsingular phase trajectory of system (50)–(57) intersecting
the manifold (60) at right angle and there exists a phase
trajectory that at any time instants completely coincides with
the point specified However, physically these trajectories are
different since they correspond to different values of the
tracing force. Prove this.
As was shown above, to maintain the constraint of the form

(38), we must take a value of T for cos α 6= 0 according to
(40).
Let

lim
α→π/2

s(α)
cosα

Γv

(
α, β1, β2, β3,

Ω
v

)
=

= L

(
β1, β2, β3,

Ω
v

)
. (70)

Note that |L| < +∞ if and only if

lim
α→π/2

∣∣∣∣
∂

∂α

(
Γv

(
α, β1, β2, β3

Ω
v

)
s(α)

)∣∣∣∣ < +∞. (71)

For α = π/2, the required value of the tracing force is
define by the equation

T = Tv

(π

2
, β1, β2, β3,Ω

)
=

= mσ(ω2
4 + ω2

7 + ω2
9 + ω2

10)−
mσLv2

2I2
. (72)

where ω4, ω7, ω9, ω10 are arbitrary.
On the other hand, maintaining the rotation about some

point W by the tracing force, we must choose this force
according to the relation

T = Tv

(π

2
, β1, β2, β3,Ω

)
=

mv2

R0
, (73)

where R0 is the distance CW .
Relations (72) and (73) define in general, different values

of the tracing force T for almost all points of the manifold
(60), which proves our assertion.

IV. CASE WHERE THE MOMENT OF A NONCONSERVATIVE
FORCE IS INDEPENDENT OF THE ANGULAR VELOCITY

A. Reduced system

Similarly to the choice of Chaplygin analytic functions, we
take the dynamical functions s, x2N , x3N , x4N , and x5N in
the following form:

s(α) = B cos α,

x2N

(
α, β1, β2, β3,

Ω
v

)
=

= x2N0(α, β1, β2, β3) = A sinα cos β1,

x3N

(
α, β1, β2, β3,

Ω
v

)
=

= x3N0(α, β1, β2, β3) = A sin α sin β1 cos β2, (74)

x4N

(
α, β1, β2, β3,

Ω
v

)
=

= x4N0(α, β1, β2, β3) = A sinα sin β1 sin β2 cos β3,

x5N

(
α, β1, β2, β3,

Ω
v

)
=

= x5N0(α, β1, β2, β3) =

= A sinα sin β1 sin β2 sin β3, A, B > 0, v 6= 0.

We see that in the system considered, the moment of noncon-
servative forces in independent of the angular velocity (but
depends on the angles α, β1, β2, β3).
Herewith, the functions Γv (α, β1, β2, β3, Ω/v) ,

∆v,s (α, β1, β2, β3, Ω/v) , s = 1, 2, 3, in system (61)–
(68), take the following form:

Γv

(
α, β1, β2, β3,

Ω
v

)
= A sinα,
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∆v,s

(
α, β1, β2, β3,

Ω
v

)
≡ 0, s = 1, 2, 3. (75)

Then, due to the nonintegrable constraint (38), outside the
manifold (60), the dynamical part of the equations of motion
(system (61)–(68)) has the form of the following analytic
system:

α′ = −z4 +
σABv

3I2
sin α, (76)

z′4 =
ABv2

3I2
sin α cos α− (z2

1 + z2
2 + z2

3)
cos α

sinα
, (77)

z′3 = z3z4
cos α

sin α
+ (z2

1 + z2
2)

cos α

sinα

cosβ1

sin β1
, (78)

z′2 = z2z4
cosα

sin α
− z2z3

cos α

sin α

cosβ1

sin β1
−

−z2
1

cos α

sin α

1
sin β1

cosβ2

sin β2
, (79)

z′1 = z1z4
cosα

sin α
− z1z3

cos α

sin α

cosβ1

sin β1
+

+z1z2
cos α

sin α

1
sin β1

cosβ2

sin β2
, (80)

β′1 = z3
cosα

sin α
, (81)

β′2 = −z2
cosα

sin α sin β1
, (82)

β′3 = z1
cosα

sin α sinβ1 sinβ2
. (83)

Further, introducing the dimensionless variables, parame-
ters, and the differentiation as follows:

zk 7→ n0vzk, k = 1, 2, 3, 4, n2
0 =

AB

3I2
,

b = σn0, < · >= n0v <′>, (84)

we reduce system (76)–(83) to the form

α′ = −z4 + b sin α, (85)

z′4 = sin α cosα− (z2
1 + z2

2 + z2
3)

cosα

sin α
, (86)

z′3 = z3z4
cos α

sin α
+ (z2

1 + z2
2)

cos α

sinα

cosβ1

sin β1
, (87)

z′2 = z2z4
cosα

sin α
− z2z3

cos α

sin α

cosβ1

sin β1
−

−z2
1

cos α

sin α

1
sin β1

cosβ2

sin β2
, (88)

z′1 = z1z4
cosα

sin α
− z1z3

cos α

sin α

cosβ1

sin β1
+

+z1z2
cos α

sin α

1
sin β1

cosβ2

sin β2
, (89)

β′1 = z3
cosα

sin α
, (90)

β′2 = −z2
cosα

sin α sin β1
, (91)

β′3 = z1
cosα

sin α sin β1 sin β2
. (92)

We see that the eighth-order system (85)–(92) (which can be
considered as a system on the tangent bundle TS4 of the four-
dimensional sphere S4, see below) contains the independent
seventh-order system (85)–(91) on its own seven-dimensional
manifold.
For the complete integration of system (85)–(92), in general,

we need seven independent firs integrals. However, after the
change of variables



z4

z3

z2

z1



→




w4

w3

w2

w1




,

w4 = z4, w3 =
√

z2
1 + z2

2 + z2
3 ,

w2 =
z2

z1
, w1 =

z3√
z2
1 + z2

2

, (93)

system (85)–(92) splits as follows:

α′ = −w4 + b sin α, (94)

w′4 = sin α cosα− w2
3

cosα

sin α
, (95)

w′3 = w3w4
cos α

sin α
, (96)

w′2 = d2(w4, w3, w2, w1;α, β1, β2, β3)
1 + w2

2

w2

cos β2

sin β2
,

β′2 = d2(w4, w3, w2, w1;α, β1, β2, β3),
(97)

w′1 = d1(w4, w3, w2, w1;α, β1, β2, β3)
1 + w2

1

w1

cos β1

sin β1
,

β′1 = d1(w4, w3, w2, w1;α, β1, β2, β3),
(98)

β′3 = d3(w4, w3, w2, w1; α, β1, β2, β3), (99)

where
d1(w4, w3, w2, w1; α, β1, β2, β3) =

= Z3(w4, w3, w2, w1)
cosα

sin α
,

d2(w4, w3, w2, w1; α, β1, β2, β3) =

= −Z2(w4, w3, w2, w1)
cos α

sin α sin β1
,

d3(w4, w3, w2, w1; α, β1, β2, β3) =

= Z1(w4, w3, w2, w1)
cos α

sin α sin β1 sin β2
,

(100)

herewith

zk = Zk(w4, w3, w2, w1), k = 1, 2, 3, (101)

are the functions due to the change of variables (93).
We see that the eighth-order system splits into independent

subsystems of lower order: system (94)–(96) has order three
and systems (97), (98) (after the change of the independent
variable) have order two. Thus, for the complete integration
of system (94)–(99) it suffice to specify two independent firs
integrals of system (94)–(96), one firs integral of each system
(97), (98), and an additional firs integral that attaches Eq. (99).
Note that system (94)–(96) can be considered on the tangent

bundle TS2 of the two-dimensional sphere S2.
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B. Completelist of invariant relations

System (94)–(96) has the form of a system that appears in
the dynamics of a three-dimensional (3D−) rigid body in a
fiel of nonconservative forces.
First, to the third-order system (94)–(96), we put in corre-

spondence the nonautonomous second-order system

dw4

dα
=

sin α cos α− w2
3 cos α/ sinα

−w4 + b sin α
,

dw3

dα
=

w3w4 cos α/ sin α

−w4 + b sin α
.

(102)

Applying the substitution τ = sin α, we rewrite system
(102) in the algebraic form

dw4

dτ
=

τ − w2
3/τ

−w4 + bτ
,

dw3

dτ
=

w3w4/τ

−w4 + bτ
.

(103)

Later on, introducing the homogeneous variables by the
formulas

w3 = u1τ, w4 = u2τ, (104)

we reduce system (103) to the following form:

τ
du2

dτ
+ u2 =

1− u2
1

−u2 + b
,

τ
du1

dτ
+ u1 =

u1u2

−u2 + b
,

(105)

which is equivalent to the system

τ
du2

dτ
=

1− u2
1 + u2

2 − bu2

−u2 + b
,

τ
du1

dτ
=

2u1u2 − bu1

−u2 + b
.

(106)

To the second-order system (106), we put in correspondence
the nonautonomous first-orde equation

du2

du1
=

1− u2
1 + u2

2 − bu2

2u1u2 − bu1
, (107)

which can be easily reduced to the exact-differential form:

d

(
u2

2 + u2
1 − bu2 + 1
u1

)
= 0. (108)

Thus, Eq. (107) has the following firs integral:

u2
2 + u2

1 − bu2 + 1
u1

= C1 = const, (109)

which in the previous variables has the form

w2
4 + w2

3 − bw4 sin α + sin2 α

w3 sinα
= C1 = const. (110)

Remark 1. Consider system (94)–(96) with variable dissi-
pation with zero mean, that becomes conservative for b = 0:

α′ = −w4,

w′4 = sin α cosα− w2
3

cos α

sin α
,

w′3 = w3w4
cos α

sinα
.

(111)

It possesses two analytic firs integrals of the form

w2
4 + w2

3 + sin2 α = C∗1 = const, (112)

w3 sin α = C∗2 = const. (113)

Obviously, the ratio of two firs integrals (112), (113) is also
a firs integral of system (111). But for b 6= 0, each of the
functions

w2
4 + w2

3 − bw4 sin α + sin2 α (114)

and (113) is not a firs integral of system (94)–(96). However,
but their ratio is a firs integral for any b.
Further, we fin the explicit form of the additional firs

integral of the third-order system (94)–(96). For this, we
transform the invariant relation (109) for u1 6= 0 as follows:

(
u2 − b

2

)2

+
(

u1 − C1

2

)2

=
b2 + C2

1

4
− 1. (115)

We see that the parameters of this invariant relation satisfy
the condition

b2 + C2
1 − 4 ≥ 0, (116)

and the phase space of system (94)–(96) is stratifie into the
family of surfaces define by Eq. (115).
Thus, by relation (109), the firs equation of system (106)

has the form

τ
du2

dτ
=

2(1− bu2 + u2
2)− C1U1(C1, u2)

−u2 + b
, (117)

where

U1(C1, u2) =
1
2
{C1 ±

√
C2

1 − 4(u2
2 − bu2 + 1)}; (118)

the integration constant C1 is define by condition (116).
Therefore, the quadrature for the search for the additional

firs integral of system (94)–(96) becomes
∫

dτ

τ
=

=
∫

(b− u2)du2

2A0 − C1{C1 ±
√

C2
1 − 4A0}/2

, (119)

A0 = 1− bu2 + u2
2.

Obviously, the left-hand side (up to an additive constant)
equals

ln | sin α|. (120)

If
u2 − b

2
= r1, b2

1 = b2 + C2
1 − 4, (121)

then the right-hand side of Eq. (119) has the form

−1
4

∫
d(b2

1 − 4r2
1)

(b2
1 − 4r2

1)± C1

√
b2
1 − 4r2

1

−

−b

∫
dr1

(b2
1 − 4r2

1)± C1

√
b2
1 − 4r2

1

=

= −1
2

ln

∣∣∣∣∣

√
b2
1 − 4r2

1

C1
± 1

∣∣∣∣∣±
b

2
I1, (122)
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where

I1 =
∫

dr3√
b2
1 − r2

3(r3 ± C1)
, r3 =

√
b2
1 − 4r2

1. (123)

In the calculation of integral (123), the following three cases
are possible.

I. b > 2.

I1 = − 1
2
√

b2 − 4
ln

∣∣∣∣∣

√
b2 − 4 +

√
b2
1 − r2

3

r3 ± C1
± C1√

b2 − 4

∣∣∣∣∣ +

+
1

2
√

b2 − 4
ln

∣∣∣∣∣

√
b2 − 4−

√
b2
1 − r2

3

r3 ± C1
∓ C1√

b2 − 4

∣∣∣∣∣ +

+const. (124)

II. b < 2.

I1 =
1√

4− b2
arcsin

±C1r3 + b2
1

b1(r3 ± C1)
+ const. (125)

III. b = 2.

I1 = ∓
√

b2
1 − r2

3

C1(r3 ± C1)
+ const. (126)

Returning to the variable

r1 =
w4

sin α
− b

2
, (127)

we obtain the fina expression for I1:
I. b > 2.

I1 = − 1
2
√

b2 − 4
ln

∣∣∣∣∣

√
b2 − 4± 2r1√
b2
1 − 4r2

1 ± C1

± C1√
b2 − 4

∣∣∣∣∣ +

+
1

2
√

b2 − 4
ln

∣∣∣∣∣

√
b2 − 4∓ 2r1√
b2
1 − 4r2

1 ± C1

∓ C1√
b2 − 4

∣∣∣∣∣+const. (128)

II. b < 2.

I1 =
1√

4− b2
arcsin

±C1

√
b2
1 − 4r2

1 + b2
1

b1(
√

b2
1 − 4r2

1 ± C1)
+ const. (129)

III. b = 2.

I1 = ∓ 2r1

C1(
√

b2
1 − 4r2

1 ± C1)
+ const. (130)

Thus, we have found an additional firs integral for the
third-order system (94)–(96) and we have the complete set of
firs integrals that are transcendental functions of their phase
variables.

Remark 2.We must substitute the left-hand side of the firs
integral (109) in the expression of this firs integral instead C1.
Then the additional firs integral obtained has the following

structure (similar to the transcendental firs integral in planar
dynamics):

ln | sin α|+ G2

(
sin α,

w4

sin α
,

w3

sinα

)
= C2 = const. (131)

Thus, for the integration of the eighth-order system (94)–
(99), we have found two independent firs integrals. For the
complete integration, as was mentioned above, it suffice to
fin one firs integral for each (potentially separated) system

(97), (98), and an additional firs integral that attaches Eq.
(99).
To fin a firs integral for each (potentially separated)

system (97), (98), we put in correspondence the following
nonautonomous first-orde equation:

dws

dβs
=

1 + w2
s

ws

cosβs

sin βs
, s = 1, 2. (132)

After integration, this leads to the invariant relation
√

1 + w2
s

sin βs
= Cs+2 = const, s = 1, 2. (133)

Further, for the search for an additional firs integral that
attaches Eq. (99), to Eqs. (99) and (97) we put in correspon-
dence the following nonautonomous equation:

dw2

dβ3
= −(1 + w2

2) cos β2. (134)

Since, by (133),

C4 cos β2 = ±
√

C2
4 − 1− w2

2, (135)

we have

dw2

dβ3
= ∓ 1

C4
(1 + w2

2)
√

C2
4 − 1− w2

2. (136)

Integrating the last relation, we arrive at the following
quadrature:

∓(β3 + C5) =
∫

C4dw2

(1 + w2
2)

√
C2

4 − 1− w2
2

, C5 = const.

(137)
Integrating this relation we obtain

∓tg(β3 + C5) =
C4w2√

C2
4 − 1− w2

2

, C5 = const. (138)

Finally, we have the following form of the additional firs
integral that attaches Eq. (99):

arctg
C4w2√

C2
4 − 1− w2

2

± β3 = C5, C5 = const. (139)

Thus, in the case considered, the system of dynamical
equations (17)–(21), (24)–(33) under condition (74) has twelve
invariant relations: the nonintegrable analytic constraint of the
form (38), the cyclic firs integrals of the form (36), (37), the
firs integral of the form (110), the firs integral expressed by
relations (124)–(131), which is a transcendental function of the
phase variables (in the sense of complex analysis) expressed
through a finit combination of elementary functions, and,
finall , the transcendental firs integrals of the form (133) and
(139).

Theorem 1. System (17)–(21), (24)–(33) under conditions
(38), (74), (37) possesses twelve invariant relations (complete
set), five of which transcendental functions from the point of
view of complex analysis. Herewith, all relations are expressed
through finite combinations of elementary functions.
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C. Topological analogies

Consider the following seventh-order system:

ξ̈ + b∗ξ̇ cos ξ + sin ξ cos ξ−
− [η̇1

2 + η̇2
2 sin2 η1 + η̇3

2 sin2 η1 sin2 η2]
sin ξ

cos ξ
= 0,

η̈1 + b∗η̇1 cos ξ + ξ̇η̇1
1 + cos2 ξ

cos ξ sin ξ
−

− (η̇2
2 + η̇3

2 sin2 η2) sin η1 cos η1 = 0,

η̈2 + b∗η̇2 cos ξ + ξ̇η̇2
1 + cos2 ξ

cos ξ sin ξ
+

+ 2η̇1η̇2
cos η1

sin η1
− η̇3

2 sin η2 cos η2 = 0,

η̈3 + b∗η̇3 cos ξ + ξ̇η̇3
1 + cos2 ξ

cos ξ sin ξ
+

+ 2η̇1η̇3
cos η1

sin η1
+ 2η̇2η̇3

cos η2

sin η2
= 0, b∗ > 0,

(140)

which describes a fi ed f ve-dimensional pendulum in a fl w
of a running medium for which the moment of forces is
independent of the angular velocity, i.e., a mechanical system
in a nonconservative field In general the order of such a
system is equal to 8, but the phase variable η3 is a cyclic
variable, which leads to the stratificatio of the phase space
and reduces the order of the system.
The phase space of this system is the tangent bundle

TS3{ξ̇, η̇1, η̇2, η̇3, ξ, η1, η2, η3} (141)

of the four-dimensional sphere S4{ξ, η1, η2, η3}. The equation
that transforms system (140) the system on the tangent bundle
of the three-dimensional sphere

η̇3 ≡ 0, (142)

and the equations of great circles

η̇1 ≡ 0, η̇2 ≡ 0, η̇3 ≡ 0 (143)

defin families of integral manifolds.
It is easy to verify that system (140) is equivalent to the

dynamical system with variable dissipation with zero mean
on the tangent bundle (141) of the four-dimensional sphere.
Moreover, the following theorem holds.

Theorem 2. System (17)–(21), (24)–(33) under conditions
(38), (74), (37) is equivalent to the dynamical system (140).
Indeed it suffice to set α = ξ, β1 = η1, β2 = η2, β3 =

η3, b = −b∗.

V. CASE WHERE THE MOMENT OF A NONCONSERVATIVE
FORCE DEPENDS ON THE ANGULAR VELOCITY

A. Introduction of the dependence on the angular velocity

This chapter is devoted to the dynamics of a f ve-
dimensional rigid body in the f ve-dimensional space. Since
the present section is devoted to the study of the motion
in the case where the moment of forces depends on the
tensor of angular velocity, we introduce this dependence in
a more general situation. This also allows us to introduce this
dependence for multi-dimensional bodies.

Let x = (x1N , x2N , x3N , x4N , x5N ) be the coordinates of
the point N of application of a nonconservative force (influ
ence of the medium) acting on the four-dimensional disk and
Q = (Q1, Q2, Q3, Q4, Q5) be the components independent of
the tensor of the angular velocity. We consider only linear
dependence of the functions (x1N , x2N , x3N , x4N , x5N ) on
the tensor of angular velocity since this introduction itself is
not obvious.
We adopt the following dependence:

x = Q + R, (144)

where R = (R1, R2, R3, R4, R5) is a vector-valued function
containing the components of the tensor of angular velocity.
The dependence of the function R on the components of the
tensor of angular velocity is gyroscopic:

R =




R1

R2

R3

R4

R5




=

= −1
v




0 −ω10 ω9 −ω7 ω4

ω10 0 −ω8 ω6 −ω3

−ω9 ω8 0 −ω5 ω2

ω7 −ω6 ω5 0 −ω1

−ω4 ω3 −ω2 ω1 0







h1

h2

h3

h4

h5




,

(145)
where (h1, h2, h3, h4, h5) are some positive parameters.
Since x1N ≡ 0, we have

x2N = Q2 − h1
ω10

v
,

x3N = Q3 + h1
ω9

v
,

x4N = Q4 − h1
ω7

v
,

x5N = Q5 + h1
ω4

v
.

(146)

B. Reducedsystem

Similarly to the choice of the Chaplygin analytic functions

Q2 = A sin α cosβ1, Q3 = A sin α sin β1 cosβ2,

Q4 = A sin α sin β1 sin β2 cos β3, (147)

Q5 = A sin α sinβ1 sinβ2 sinβ3, A > 0,

we take the dynamical functions s, x2N , x3N , x4N , and x5N

in the following form:

s(α) = B cos α, B > 0,

x2N

(
α, β1, β2,

Ω
v

)
= A sin α cos β1 − h

ω10

v
,

x3N

(
α, β1, β2,

Ω
v

)
= A sin α sin β1 cos β2 + h

ω9

v
, (148)

x4N

(
α, β1, β2,

Ω
v

)
= A sin α sinβ1 sinβ2 cosβ3 − h

ω7

v
,
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x5N

(
α, β1, β2,

Ω
v

)
= A sinα sin β1 sin β2 sin β3+

+h
ω4

v
, h = h1 > 0, v 6= 0.

This shows that in the problem considered, there is an ad-
ditional damping (but accelerating in certain domains of the
phase space) moment of a nonconservative force (i.e., there is
a dependence of the moment on the components of the tensor
of angular velocity). Moreover, h2 = h3 = h4 = h5 due to
the dynamical symmetry of the body.
In this case, the functions Γv (α, β1, β2, β3, Ω/v) ,

∆v,s (α, β1, β2, β3, Ω/v) , s = 1, 2, 3, in system (61)–(68)
have the following form:

Γv

(
α, β1, β2, β3,

Ω
v

)
= A sin α− h

v
z4,

∆v,1

(
α, β1, β2, β3,

Ω
v

)
=

h

v
z3, (149)

∆v,2

(
α, β1, β2, β3,

Ω
v

)
= −h

v
z2,

∆v,3

(
α, β1, β2, β3,

Ω
v

)
=

h

v
z1.

Then, due to the nonintegrable constraint (38), outside the
manifold (60) the dynamical part of the equations of motion
(system (61)–(68)) takes the form of the analytic system

α̇ = −
(

1 +
σBh

3I2

)
z4 +

σABv

3I2
sin α, (150)

ż4 =
ABv2

3I2
sin α cosα−

−
(

1 +
σBh

3I2

)
(z2

1 + z2
2 + z2

3)
cosα

sin α
− Bhv

3I2
z4 cosα, (151)

ż3 =
(

1 +
σBh

3I2

)
z3z4

cosα

sin α
+

+
(

1 +
σBh

3I2

)
(z2

1 +z2
2)

cosα

sin α

cos β1

sinβ1
− Bhv

3I2
z3 cos α, (152)

ż2 =
(

1 +
σBh

3I2

)
z2z4

cosα

sin α
−

−
(

1 +
σBh

3I2

)
z2z3

cosα

sin α

cos β1

sinβ1
−

−
(

1 +
σBh

3I2

)
z2
1

cos α

sin α

1
sin β1

cosβ2

sin β2
− Bhv

3I2
z2 cos α, (153)

ż1 =
(

1 +
σBh

3I2

)
z1z4

cosα

sin α
−

−
(

1 +
σBh

3I2

)
z1z3

cosα

sin α

cos β1

sinβ1
+

+
(

1 +
σBh

3I2

)
z1z2

cosα

sin α

1
sin β1

cos β2

sinβ2
−

−Bhv

3I2
z1 cos α, (154)

β̇1 =
(

1 +
σBh

3I2

)
z3

cos α

sin α
, (155)

β̇2 = −
(

1 +
σBh

3I2

)
z2

cos α

sin α sin β1
, (156)

β̇3 =
(

1 +
σBh

3I2

)
z1

cos α

sin α sin β1 sin β2
. (157)

Introducing the dimensionless variables, parameters, and the
differentiation as follows:

zk 7→ n0vzk, k = 1, 2, 3, 4, n2
0 =

AB

3I2
,

b = σn0, H1 =
Bh

3I2n0
, < · >= n0v <′>,

(158)

we reduce system (150)–(157) to the form

α′ = − (1 + bH1) z4 + b sin α, (159)

z′4 = sin α cos α−
− (1 + bH1) (z2

1 + z2
2 + z2

3)
cosα

sin α
−H1z4 cos α, (160)

z′3 = (1 + bH1) z3z4
cosα

sin α
+

+ (1 + bH1) (z2
1 + z2

2)
cosα

sin α

cosβ1

sin β1
−H1z3 cos α, (161)

z′2 = (1 + bH1) z2z4
cosα

sin α
−

− (1 + bH1) z2z3
cosα

sin α

cos β1

sin β1
−

− (1 + bH1) z2
1

cosα

sin α

1
sin β1

cos β2

sin β2
−H1z2 cos α, (162)

z′1 = (1 + bH1) z1z4
cosα

sin α
−

− (1 + bH1) z1z3
cosα

sin α

cos β1

sin β1
+

+ (1 + bH1) z1z2
cosα

sin α

1
sin β1

cos β2

sinβ2
−H1z1 cos α, (163)

β′1 = (1 + bH1) z3
cosα

sin α
, (164)

β′2 = − (1 + bH1) z2
cos α

sin α sinβ1
, (165)

β′3 = (1 + bH1) z1
cosα

sin α sin β1 sin β2
. (166)

We see that the eighth-order system (159)–(166) (which
can be considered on the tangent bundle TS4 of the four-
dimensional sphere S4), contains an independent seventh-order
system (159)–(165) on its own seven-dimensional manifold.
For the complete integration of system (159)–(166), we

need, in general, seven independent firs integrals. However,
after the change of variables




z4

z3

z2

z1



→




w4

w3

w2

w1




,
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w4 = z4, w3 =
√

z2
1 + z2

2 + z2
3 ,

w2 =
z2

z1
, w1 =

z3√
z2
1 + z2

2

, (167)

system (159)–(166) splits as follows:

α′ = −(1 + bH1)w4 + b sin α, (168)

w′4 = sin α cos α− (1 + bH1)w2
3

cosα

sin α
−H1w4 cos α, (169)

w′3 = (1 + bH1)w3w4
cosα

sin α
−H1w3 cos α, (170)

w′2 = d2(w4, w3, w2, w1; α, β1, β2, β3)×

× 1 + w2
2

w2

cos β2

sin β2
,

β′2 = d2(w4, w3, w2, w1;α, β1, β2, β3),

(171)

w′1 = d1(w4, w3, w2, w1; α, β1, β2, β3)×

× 1 + w2
1

w1

cos β1

sin β1
,

β′1 = d1(w4, w3, w2, w1;α, β1, β2, β3),

(172)

β′3 = d3(w4, w3, w2, w1; α, β1, β2, β3), (173)

where

d1(w4, w3, w2, w1; α, β1, β2, β3) =

= (1 + bH1)Z3(w4, w3, w2, w1)
cosα

sin α
,

d2(w4, w3, w2, w1; α, β1, β2, β3) =

= −(1 + bH1)Z2(w4, w3, w2, w1)
cos α

sin α sin β1
,

d3(w4, w3, w2, w1; α, β1, β2, β3) =

= (1 + bH1)Z1(w4, w3, w2, w1)
cos α

sin α sin β1 sin β2
,

(174)

herewith,

zk = Zk(w4, w3, w2, w1), k = 1, 2, 3, (175)

are the functions, due to the change of variables (167).
We see that the eighth-order system splits into independent

subsystems of lower orders: system (168)–(170) of order 3
and each of system (171), (172) (certainly, after a choice of
the independent variables) of order 2. Thus, for the complete
integration of system (168)–(173), it suffice to fin two
independent firs integrals of system (168)–(170), one firs
integral of each system (171), (172), and an additional firs
integral that attaches Eq. (173).
Note that system (168)–(170) can be considered on the

tangent bundle TS2 of the two-dimensional sphere S2.

C. Complete list of invariant relation

System (168)–(170) has the form of a system of equations
that appears in the dynamics of a three-dimensional (3D−)
rigid body in a nonconservative field

First, to the third-order system (168)–(170), we put in
correspondence the nonautonomous second-order system

dw4

dα
=

=
sinα cos α− (1 + bH1)w2

3 cosα/ sin α−H1w4 cosα

−(1 + bH1)w4 + b sinα
,

dw3

dα
=

=
(1 + bH1)w3w4 cos α/ sin α−H1w3 cos α

−(1 + bH1)w4 + b sinα
.

(176)
Using the substitution τ = sin α, we rewrite system (176)

in the algebraic form:

dw4

dτ
=

τ − (1 + bH1)w2
3/τ −H1w4

−(1 + bH1)w4 + bτ
,

dw3

dτ
=

(1 + bH1)w3w4/τ −H1w3

−(1 + bH1)w4 + bτ
.

(177)

Further, introducing the homogeneous variables by the for-
mulas

w3 = u1τ, w4 = u2τ, (178)

we reduce system (177) to the following form:

τ
du2

dτ
+ u2 =

1− (1 + bH1)u2
1 −H1u2

−(1 + bH1)u2 + b
,

τ
du1

dτ
+ u1 =

(1 + bH1)u1u2 −H1u1

−(1 + bH1)u2 + b
,

(179)

which is equivalent to

τ
du2

dτ
=

(1 + bH1)(u2
2 − u2

1)− (b + H1)u2 + 1
−(1 + bH1)u2 + b

,

τ
du1

dτ
=

2(1 + bH1)u1u2 − (b + H1)u1

−(1 + bH1)u2 + b
.

(180)

To the second-order system (180), we put in correspondence
the nonautonomous first-orde equation

du2

du1
=

1− (1 + bH1)(u2
1 − u2

2)− (b + H1)u2

2(1 + bH1)u1u2 − (b + H1)u1
, (181)

which can be easily reduce to the exact-differential form:

d

(
(1 + bH1)(u2

2 + u2
1)− (b + H1)u2 + 1
u1

)
= 0. (182)

Thus, Eq. (181) has the following firs integral:

(1 + bH1)(u2
2 + u2

1)− (b + H1)u2 + 1
u1

=

= C1 = const, (183)

which in the original variables has the form

(1 + bH1)(w2
4 + w2

3)− (b + H1)w4 sin α + sin2 α

w3 sinα
=

= C1 = const. (184)
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Remark 3. Consider system (168)–(170) with variable
dissipation with zero mean, which becomes conservative for
b = H1:

α′ = −(1 + b2)w4 + b sinα,

w′4 = sin α cos α− (1 + b2)w2
3

cos α

sin α
− bw4 cosα,

w′3 = (1 + b2)w3w4
cos α

sinα
− bw3 cosα.

(185)

It possesses the following two analytic firs integrals:

(1+b2)(w2
4+w2

3)−2bw4 sin α+sin2 α = C∗1 = const, (186)

w3 sin α = C∗2 = const. (187)

Obviously, the ratio of the two firs integrals (186), (187) is
also a firs integral of system (185). But for b 6= H1 none of
the functions

(1 + bH1)(w2
4 + w2

3)− (b + H1)w4 sin α + sin2 α (188)

and (187) is a firs integral of system (168)–(170). However,
the ratio of the functions (188), (187) is a firs integral of
system (168)–(170) for any b,H1.
We fin the explicit form of the additional firs integral of

the third-order system (168)–(170). First, we transform the
invariant relation (183) for u1 6= 0 as follows:

(
u2 − b + H1

2(1 + bH1)

)2

+
(

u1 − C1

2(1 + bH1)

)2

=

=
(b−H1)2 + C2

1 − 4
4(1 + bH1)2

. (189)

We see that the parameters of this invariant relation must
satisfy the condition

(b−H1)2 + C2
1 − 4 ≥ 0, (190)

and the phase space of system (168)–(170) is stratifie into
the family of surfaces define by Eq. (189).
Thus, due to relation (183), the firs equation of system

(180) has the form
τ

du2

dτ
=

=
2(1 + bH1)u2

2 − 2(b + H1)u2 + 2− C1U1(C1, u2)
b− (1 + bH1)u2

,

(191)
where

U1(C1, u2) =
1

2(1 + bH1)
{C1 ± U2(C1, u2)}, (192)

U2(C1, u2) =

=
√

C2
1 − 4(1 + bH1)(1− (b + H1)u2 + (1 + bH1)u2

2),

and the integration constant C1 is define by condition (190).
Therefore, the quadrature for the search for an additional

firs integral of system (168)–(170) becomes
∫

dτ

τ
=

=
∫

(b− (1 + bH1)u2)du2

2A1 − C1{C1 ± U2(C1, u2)}/(2(1 + bH1))
, (193)

A1 = 1− (b + H1)u2 + (1 + bH1)u2
2.

Obviously, the left-hand side (up to an additive constant) is
equal to

ln | sin α|. (194)

If

u2 − b + H1

2(1 + bH1)
= r1, b2

1 = (b−H1)2 + C2
1 − 4, (195)

then the right-hand side of Eq. (193) becomes

−1
4

∫
d(b2

1 − 4(1 + bH1)r2
1)

(b2
1 − 4(1 + bH1)r2

1)± C1

√
b2
1 − 4(1 + bH1)r2

1

−

−(b−H1)(1 + bH1)×

×
∫

dr1

(b2
1 − 4(1 + bH1)r2

1)± C1

√
b2
1 − 4(1 + bH1)r2

1

=

= −1
2

ln

∣∣∣∣∣

√
b2
1 − 4(1 + bH1)r2

1

C1
± 1

∣∣∣∣∣±
b−H1

2
I1, (196)

where
I1 =

∫
dr3√

b2
1 − r2

3(r3 ± C1)
,

r3 =
√

b2
1 − 4(1 + bH1)r2

1. (197)

In the calculation of integral (197), the following three cases
are possible:

I. |b−H1| > 2.

I1 = − 1
2
√

(b−H1)2 − 4
×

× ln

∣∣∣∣∣

√
(b−H1)2 − 4 +

√
b2
1 − r2

3

r3 ± C1
± C1√

(b−H1)2 − 4

∣∣∣∣∣ +

+
1

2
√

(b−H1)2 − 4
×

× ln

∣∣∣∣∣

√
(b−H1)2 − 4−

√
b2
1 − r2

3

r3 ± C1
∓ C1√

(b−H1)2 − 4

∣∣∣∣∣ +

+const. (198)

II. |b−H1| < 2.

I1 =
1√

4− (b−H1)2
arcsin

±C1r3 + b2
1

b1(r3 ± C1)
+ const. (199)

III. |b−H1| = 2.

I1 = ∓
√

b2
1 − r2

3

C1(r3 ± C1)
+ const. (200)

Returning to the variable

r1 =
w3

sin α
− b + H1

2(1 + bH1)
, (201)

we have the following fina form of I1:
I. |b−H1| > 2.

I1 = − 1
2
√

(b−H1)2 − 4
×
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× ln

∣∣∣∣∣

√
(b−H1)2 − 4± 2(1 + bH1)r1√

b2
1 − 4(1 + bH1)2r2

1 ± C1

± C1√
(b−H1)2 − 4

∣∣∣∣∣ +

+
1

2
√

(b−H1)2 − 4
×

× ln

∣∣∣∣∣

√
(b−H1)2 − 4∓ 2(1 + bH1)r1√

b2
1 − 4(1 + bH1)2r2

1 ± C1

∓ C1√
(b−H1)2 − 4

∣∣∣∣∣ +

+const. (202)

II. |b−H1| < 2.

I1 =
1√

4− (b−H1)2
×

× arcsin
±C1

√
b2
1 − 4(1 + bH1)2r2

1 + b2
1

b1(
√

b2
1 − 4(1 + bH1)2r2

1 ± C1)
+ const. (203)

III. |b−H1| = 2.

I1 = ∓ 2(1 + bH1)r1

C1(
√

b2
1 − 4(1 + bH1)2r2

1 ± C1)
+ const. (204)

Thus, we have found an additional firs integral for the third-
order system (168)–(170) and we have the complete set of
firs integrals that are transcendental functions of their phase
variables.

Remark 4. Formally, in the expression of the found firs
integral, we must substitute instead of C1 the left-hand side
of the firs integral (183).
Then the obtained additional firs integral has the following

structure (similar to the transcendental firs integral from
planar dynamics):

ln | sin α|+ G2

(
sin α,

w4

sin α
,

w3

sinα

)
= C2 = const. (205)

Thus, to integrate the eighth-order system (168)–(173), we
have already found two independent firs integrals. For the
complete integration, as was mentioned above, it suffice to
fin one firs integral for each (potentially separated) system
(171), (172), and an additional firs integral that attaches Eq.
(173).
To fin a firs integral of each (potentially separated) system

(171), (172), we put in correspondence the following nonau-
tonomous first-orde equation:

dws

dβs
=

1 + w2
s

ws

cosβs

sin βs
, s = 1, 2. (206)

After integration we obtain the required invariant relation
√

1 + w2
s

sin βs
= Cs+2 = const, s = 1, 2. (207)

Further, to obtain an additional firs integral that attaches
Eq. (173), to Eqs. (173) and (171) we put in correspondence
the following nonautonomous equation:

dw2

dβ3
= −(1 + w2

2) cos β2. (208)

Since
C4 cos β2 = ±

√
C2

4 − 1− w2
2, (209)

by (207), we have
dw2

dβ3
= ∓ 1

C4
(1 + w2

2)
√

C2
4 − 1− w2

2. (210)

Integrating this relation, we arrive at the following quadra-
ture:

∓(β3 + C5) =
∫

C4dw2

(1 + w2
2)

√
C2

4 − 1− w2
2

,

C5 = const. (211)

Integration leads to the relation

∓tg(β3 + C5) =
C4w2√

C2
4 − 1− w2

2

, C5 = const. (212)

Finally, we have the following additional firs integral that
attaches Eq. (173):

arctg
C4w2√

C2
4 − 1− w2

2

± β3 = C5, C5 = const. (213)

Thus, in the case considered, the system of dynamical equa-
tions (17)–(21), (24)–(33) under condition (148) has twelve
invariant relations: the analytic nonintegrable constraint of the
form (38), the cyclic firs integrals of the form (36) and (37),
the firs integral of the form (184), the firs integral expressed
by relations (198)–(205), which is a transcendental function
of the phase variables (in the sense of complex analysis)
expressed through a finit combination of functions, and the
transcendental firs integrals of the form (207) and (213).

Theorem 3. System (17)–(21), (24)–(33) under conditions
(38), (148), (37) possesses twelve invariant relations (complete
set); five of them are transcendental functions from the point of
view of complex analysis. All relations are expressed through
finite combinations of elementary functions.

D. Topological analogies

Consider the following seventh-order system:

ξ̈ + (b∗ −H1∗)ξ̇ cos ξ + sin ξ cos ξ−
− [η̇1

2 + η̇2
2 sin2 η1 + η̇3

2 sin2 η1 sin2 η2]
sin ξ

cos ξ
= 0,

η̈1 + (b∗ −H1∗)η̇1 cos ξ + ξ̇η̇1
1 + cos2 ξ

cos ξ sin ξ
−

− (η̇2
2 + η̇3

2 sin2 η2) sin η1 cos η1 = 0,

η̈2 + (b∗ −H1∗)η̇2 cos ξ + ξ̇η̇2
1 + cos2 ξ

cos ξ sin ξ
+

+ 2η̇1η̇2
cos η1

sin η1
− η̇3

2 sin η2 cos η2 = 0,

η̈3 + (b∗ −H1∗)η̇3 cos ξ + ξ̇η̇3
1 + cos2 ξ

cos ξ sin ξ
+

+ 2η̇1η̇3
cos η1

sin η1
+ 2η̇2η̇3

cos η2

sin η2
= 0,

b∗ > 0, H1∗ > 0.

(214)

This system describes a fi ed f ve-dimensional pendulum in
a fl w of a running medium for which the moment of forces
depends on the angular velocity, i.e., a mechanical system in
a nonconservative field Generally speaking, the order of this
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system must be equal to 8, but the phase variable η3 is a cyclic
variable, which leads to the stratificatio of the phase space
and reduced the order of the system.
The phase space of this system is the tangent bundle

TS3{ξ̇, η̇1, η̇2, η̇3, ξ, η1, η2, η3} (215)

of the four-dimensional sphere S4{ξ, η1, η2, η3}. The equation
that transforms system (140) into the system on the tangent
bundle of the three-dimensional sphere

η̇3 ≡ 0, (216)

and the equations of great circles

η̇1 ≡ 0, η̇2 ≡ 0, η̇3 ≡ 0 (217)

defin families of integral manifolds.
It is easy to verify that system (214) is equivalent to the

dynamical system with variable dissipation with zero mean
on the tangent bundle (215) of the four-dimensional sphere.
Moreover, the following theorem holds.

Theorem 4. System (17)–(21), (24)–(33) under conditions
(38), (148), (37) is equivalent to the dynamical system (214).
Indeed, it suffice to set α = ξ, β1 = η1, β2 = η2, β3 =

η3, b = −b∗, H1 = −H1∗.

VI. CONCLUSION

In the previous studies of the author, the problems on the
motion of the lower-dimensional solid were already consid-
ered in a nonconservative force fiel in the presence of the
following force. This study opens a new cycle of works on
integration of a multidimensional solid in the nonconservative
fiel because previously, as was already specified we consid-
ered only such motions of a solid when the fiel of external
forces was the potential.
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