
 

 

  
Abstract— Hyperspectral remote sensing produces a huge amount 

of three-dimensional digital data: the hyperspectral images. 
Hyperspectral images are used to recognize objects and to classify 
materials on the surface of the earth. They are considered a useful 
tool in different real-life applications. In this paper we propose a 
novel approach for the efficient lossless compression of hyperspectral 
images, which is based on a predictive coding model. Our approach 
relies on a three-dimensional predictive structure that uses, one or 
more, previous bands as references to exploit the redundancies 
among the third dimension. The proposed technique uses limited 
resources in terms of CPU and memory usage. The achieved results 
are comparable, and often better, with respect to the other state-of-art 
lossless compression techniques for hyperspectral images. 
 
Keywords— Hyperspectral images, lossless compression, low 

complexity, 3-D data. 

I. INTRODUCTION 
HREE-dimensional data generated by hyperspectral 
remote sensing are collected from the visible and the near-

infrared spectrum of reflected light. The human visual system, 
can only see visible light: the wavelengths between 360 to 760 
nanometers (nm), the hyperspectral data, commonly referred 
as hyperspectral images, reveal also the frequencies of 
ultraviolet and infrared rays. Thus, a hyperspectral image is a 
collection of information derived from the electromagnetic 
spectrum of an observed area.  

Figure 1 shows a graphical representation of an 
hyperspectral image that highlights its three-dimensional 
nature. The X-axis indicates the columns, the Y-axis indicates 
the rows and the Z-axis indicates the spectral channels of the 
hyperspectral image, often referred as bands. 

There are many real-life applications in which hyperspectral 
data are used: agriculture, mineralogy, physics, surveillance, 
etc.. In geological applications, for example, the capabilities of 
hyperspectral remote sensing can be useful to identify various 
types of minerals, by permitting the search of minerals and oil. 

Each hyperspectral sensor generates daily data in the order 
of many gigabytes, it is therefore necessary to compress these 
data so to be able to transmit and to store them efficiently. 
Lossless compression is generally used in order to preserve the 
original data, because of the high costs involved in the 
acquisitions and also for the importance of these data in 
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delicate tasks (as for instance target classification or 
detection). 

In this paper, we propose a novel technique for the lossless 
compression of hyperspectral images. The proposed algorithm 
is based on the predictive coding model and the proposed 
predictive structure uses a multiband three-dimensional 
structure. Our technique allows to customize the encoding 
parameters, as for instance the number of the previous bands 
which will be used as references. We designed our approach to 
optimize the computational complexity and the memory 
usage, which depends on the chosen parameters. 

The experimental results show that the compression results 
obtained by this algorithm reach, and often outperform, the 
performance of the other state of the art approaches, and that 
the algorithm maintains a good trade-off between 
computational complexity/memory usage and compression 
performances.  

Our algorithm is suitable for on board implementations: it is 
highly configurable and it is possible to implement it with 
limited hardware capabilities, as on airplane or a satellite. 

The paper is organized as follow: Section 2 shortly 
discusses previous work on lossless and lossy compression of 
hyperspectral images, Section 3 describes the proposed 
lossless compression approach, Section 4 reports the 
experimental results and Section 5 highlights our conclusion 
and future work directions. 

 

Figure 1. Graphical representation of an hyperspectral image 
(NASA AVIRIS Moffett Field). 
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II. PREWIOUS WORK 
Lossless compression of hyperspectral images is generally 

based on the predictive coding model. The predictive-based 
approaches have different advantages: they use limited 
resources in terms of computational power and memory and 
achieve good compression performances. Thus, these models 
are suitable for on board implementations.  

Spectral-oriented Least SQuares (SLSQ) [20], Linear 
Predictor (LP) [20], Fast Lossless (FL) [8], CALIC-3D [10], 
M-CALIC [10] and EMPORDA [21] are among the state-of-
art predictive-based techniques.  

Other approaches are designed for offline compression, 
since they use more sophisticated techniques and/or require to 
have available at once the whole hyperspectral image. These 
approaches are not suitable for an on board implementation 
but can achieve better compression performances. 

 Mielikainen, in [12], proposed an approach for the 
compression of hyperspectral image through Look-Up Table 
(LUT). LUT predicts each pixel by using all the pixels in the 
current and in the previous band, by searching the nearest 
neighbor, in the previous band, which has the same pixel value 
as the pixel located in the same spatial coordinates as the 
current pixel. LUT has high compression performances, but it 
uses more resources in terms of memory and CPU usage. 

Other lossless techniques are based on dimensionality 
reduction through principal component transform [17].  

An error-resilient lossless compression technique is 
proposed in [1]. 

For the lossy compression of hyperspectral images, the 
compression algorithms are, generally, based on 3D frequency 
transforms: as for examples 3-D Discrete Wavelet Transform 
(3D-DWT) [9], 3-D Discrete Cosine Transform (3D-DCT) 
[11], Karhunen–Loève transform (KLT) [16], etc.. These 
approaches are easily scalable. On the other hand, they require 
to maintain in memory the entire hyperspectral image at the 
same time. Locally optimal Partitioned Vector Quantization 
(LPVQ) [3, 13] applies a Partitioned Vector Quantization 
(PVQ) scheme independently to each pixel of the 
hyperspectral image. The variable sizes of the partitions are 
chosen adaptively and the indices are entropy coded. The 
codebook is included as part of the coded output.  

This technique can be used also in lossless mode, but the 
high costs required in terms of CPU and memory do not allow 
an on board implementation 

III. MULTIBAND COMPRESSION OF HYPERSPECTRAL IMAGES 
Hyperspectral images present a strong correlation among 

consecutive bands (inter-band) and a high correlation in the 
spatial context (intra-band).  

Figure 2 highlights the correlation among consecutive 
bands: the X-axis indicates the bands and the Y-axis indicates 
the Pearson’s correlation [15] between the i-th band and the (i- 
1)-th band. As it is possible to observe, the Pearson’s 
correlation assumes high values in most of the cases. 

These characteristics can be exploited by a compression  

Figure 2. Pearson’s correlation among consecutive bands for 
the fourth scenes of the Moffett Field hyperspectral image. 

 
algorithm that optimizes the redundancy among the third 
dimension. 

The proposed lossless compression technique: named 
Lossless MultiBand compression for Hyperspectral Images 
(LMBHI), is based on the predictive coding model.  

LMBHI takes as input the hyperspectral image, and, for 
each pixel X of the hyperspectral image performs the 
prediction of the current pixel, 

! 

ˆ X , by using the appropriate 
prediction context of X.  

Since the pixels of the first band have no reference pixels in 
the previous bands, they are predicted by using a bi-
dimensional predictive structure: the 2-D Linearized Median 
Predictor (2-D LMP) [19] that uses only the neighboring 
pixels.  

All the other pixels of all the other bands are predicted by 
using a new three-dimensional predictive approach, which 
uses for the prediction the neighboring pixels of X and its 
reference pixels in the previous bands. 

After the prediction step, the prediction error:   
                                   ! "XXe ˆ#=  

is computed, modeled, and coded.  
In the following, we give more details on all the components 

of the algorithm. 
The 2-Dimensional Linearized Median Predictor (2D-LMP) 

[19] uses as prediction context the three neighboring pixels of 
X, referred as IA, IB and IC, as shown in Figure 3. 

The predictive structure is derived from the well-established 
2-D Median Predictor, that is used in JPEG-LS [4]. 

 

Figure 3. The prediction context of the 2D-LMP predictive 
structure. The gray part is already coded and the white part is 
not coded yet. 
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The 2-D Median Predictor has the following predictive 
structure:  

Median Predictor selects one of the above three options, 
depending on the context.  

By combining all the three options, it is possible to obtain 
the predictive structure of 2D-LMP, defined as: 

Our three-dimensional Multiband Linear Predictor (3D-
MBLP) uses, instead, N (up to 16) neighboring pixels (of X) 
for each of the B previous bands, to compute the prediction of 
X.  

In order to define the prediction context, we need to 
enumerate the neighboring pixels of X in the current and in the 
previous bands.  

For these reasons, we define an enumeration that depends 
on a distance d, defined as: 

When more pixels have the same indices, it is possible to 
reassign the indices of these pixels in clockwise order with 
respect to X. 

Let Ii, j denotes the i-th pixel of the j-th band, according to 
the above enumeration. 

Let I0, j denotes the pixel that has the same spatial 
coordinates of X, of the j-th band ( kj ! ), according to the 
above enumeration.  

Figure 4 shows the resulting enumeration of the first N=16 
pixels for the k-th band. 

3D-MBLP is based on least squares optimizations and the 
prediction is computed as: 

The coefficients: 

are chosen to minimize the energy of the prediction error 

P can be rewritten in matrix notation as: P = (C! -X)T ! (C! -
X), where: 
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By taking the derivate of P and by setting it to zero, we obtain 
the optimal coefficients: 
(1) (CTC) =0! (CTX). 

 
Figure 4. The prediction context (N=16) for the current pixel 
X in the k-th band. The gray pixels have already been coded, 
the white pixels are not coded yet. 

 
Once the coefficients 0! , which solve the linear system 

(1), are obtained, then it is possible to compute the prediction 
X̂ of the current pixel X.  

A prediction error can assume positive or negative values. 
In order to have only non-negative values, similarly to [14], 
we mapped each prediction error with an invertible mapping 
function M (which does not alter the redundancy among the 
errors). The simplified definition of the function M is: 

 
where x  means the absolute value of x .  

Once mapped, the error is coded through arithmetic coding. 
The main computational costs of our approach are due to the 

resolution of the linear system (1) to generate the optimal 
coefficients 

! 

"0 for the computation of the predicted pixel. By 
using the normal equation method, the linear system (1) can be 
solved with 2)3( BBN !+  floating-point operations [6]. 

Figure 5 shows the trend of the computational complexity of 
our predictive model, in terms of number of operations (Y-
axis) that are required for the solving of the linear system (1), 
by using configurations with different parameters  (X-axis).  

If we use only the previous band as a reference (B = 1), only 
about 20 operations are needed to solve the system.  

Instead 4 or 9 times more operations are required, if we use 
two previous bands (B = 2) or three previous bands (B = 3). 

A linear system can have three kinds of solutions: no 
solutions, one solution and infinity solutions.  

In the first and the third scenarios, the proposed predictive 
structure cannot perform the prediction.  

In these cases, it is desirable to use another low-complexity 
predictive structure and we have used the 3-D 
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Figure 5. The number of operations (Y-axis) required to solve 
the linear system (1), by using different parameters (X-axis). 
 
Distances-based Linearized Median Predictor (3D-DLMP) 
[19]. 

IV. EXPERIMENTAL RESULTS 
We have experimentally tested our approach on five 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [2] 
hyperspectral images provided by the NASA Jet Propulsion 
Lab (JPL) [7], each image is subdivided into scenes.  

The test set we have used is composed by the following 
images: Lunar Lake, Moffett Field, Jasper Ridge, Cuprite and 
Low Altitude, respectively of 3, 4, 6, 5 and 8 scenes. Except 
for the last scenes of each image that have a minor number of 
rows, each scene of the images has 614 columns, 512 lines and 
224 spectral bands. Each sample is represented by an integer 
with 16 bits. 

Table 1 reports the results achieved by using our approach 
with different parameters on all the test images. These results 
are reported in terms of compression ratio (C.R.) and they are 
compared with other state of the art lossless compression 
schemes.  

By using two previous bands as references (B = 2), LMBHI 
outperforms, in average, all the state of the art approaches. 

By using only the previous band as reference (B = 1), 
LMBHI outperforms all the state of the art techniques, with 
exception of LPVQ: an algorithm that is not suitable for on 
board implementation. 

In this latter case, LMBHI achieves better results with 
respect to LPVQ on 3 of the 5 hyperspectral images: Moffett 
Field, Jasper Ridge and Low Altitude, but LPVQ gains on 
Cuprite and especially on Lunar Lake. 

The high flexibility and adaptability of our approach makes 
it considerable for on board implementations. In fact, the 
coding parameters can be customized depending on the  
hardware available.  

Therefore, it is possible to implement the algorithm on 
different typologies of sensors, by using an appropriate 
configuration for each one. Moreover, the proposed approach 
could be easily scaled for future generation sensors, which 
will have better hardware capabilities. 

 

 

 

Table 1. Compression results (C.R.) achieved by LMBHI (by 
using various parameter configurations), compared to other 
lossless compression methods. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper we have proposed a predictive-based scheme 

to compress hyperspectral images, which uses a multiband 
three-dimensional predictive structure and that it is suitable for 
onboard implementations. 

The results achieved are comparable and often outperform 
the other state of the art lossless compression techniques. 

Future work will include a more intensive testing of the 
proposed approach, by taking also into consideration the 
possibility of pre-processing the hyperspectral image before 
compression, or by reordering the bands by considering their 
correlation.  

This will possibly improve the compression performance [5, 
13, 18]. 
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