
 

 

  
Abstract—For the realization of current social and public 

buildings reinforced concrete frame structures with masonry infill 
walls are frequently used, as well load bearing masonry walls with 
reinforced concrete tie-beams and pillars. When establishing the 
appropriate structural solution generally the cost of the realization, 
the construction time and the architectural impact of the chosen 
solution are taken into consideration, often neglecting the 
environmental impact of the chosen solution. The paper presents a 
study on a three-storey building having the same architecture, 
realised in two structural solutions. Life cycle analyses are performed 
for both structural solutions: reinforced concrete frame structure with 
masonry infill walls and load bearing masonry walls with reinforced 
concrete tie-beams and pillars. Results based on the material 
quantities calculated for both situations are compared. Differences 
appear in all the main LCA indicators taken into consideration: 
energy, solid emissions in air and water, natural resources 
consumption and waste generation. Comparing the results the more 
sustainable structural solution with less environmental impact can be 
concluded. 

Keywords—structural sustainability, masonry walls, reinforced 
concrete frame, environmental impact. 

 

I. INTRODUCTION 
NGINEERING is traditionally equivalent to numbers, 
formulas, equations, diagrams and other measurable units, 

simplifying the evaluation and comparison of different 
solutions. Sustainability principles defined by the Brundtland 
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Commission of the United Nations on March 20, 1987 [1] as 
part of the notion sustainable development, are representing 
huge challenge for the structural engineering society: even if 
the statement of the concept is easy to understand, in practice 
it brings difficulties in the exercise of the engineering 
profession. In practice of the structural engineering 
establishing environmental impact reduction measures of 
structural systems are unfortunately reduced to choosing of 
more environmental friendly materials, but how can we 
conclude the proper structural solution with reduced 
environmental impact? Since environmental impact of 
structures is not an absolute science, the better and better 
structural solutions – environmental impact-wise – can be 
achieved only by comparing different structural solutions [2].  

Sustainability by default lays on three pillars, which are not 
mutually exclusive but can be mutually reinforcing [3], 
representing nothing else than the reconciliation – or the 
compromise - of environmental, social equity and economic 
demands. In establishing of the structural system for buildings 
engineers are accustomed to utilize the most appropriate 
structural codes, norms and standards, as well as the essential 
requirements stated in the Council Directive 89/108/EEC [4],  
overtaken also by other specific laws. When focusing on the 
requirements “hygiene, health and environment” and “energy 
economy” further dilemmas can be face in lack of specific and 
practical measuring instruments. Concerns of specialists from 
all around the world from the field of civil and environmental 
engineering represents a progress in obtaining more 
sustainable structures with reduced environmental impact, but 
no generally valid rules can be found yet for the given scope. 
The ISO 14000 standard family on environmental management 
[5] provides theoretical tools to identify and control the 
environmental impact of companies and organizations and to 
improve their environmental performance, but in practice there 
are still huge gaps in the realisation of the structural systems 
with reduced environmental impact. One of the most efficient 
methodologies for obtaining a sustainable structural system is 
the impact assessment of the studied structure using Life Cycle 
Analysis (LCA), emphasized in studies performed by 
Danatzko and Sezen [6] and others. The life cycle analysis of 
structures is considering impact of the whole cradle-to-grave 
and to cradle again circle of the materials, structures and 
buildings (Fig. 1), regulated by European framework standards 
EN 15643-1:2010 [7] and EN 15643-2:2011 [8]. 
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Fig. 1 Life cycle of the construction materials 

 
Environmental impact of a structure is influenced by the 

established static scheme, the embedded construction 
materials, the quality and quantity of the used materials, the 
realisation processes, the service period and eventual 
maintenance and the possible recycling of the demolished 
structure. Studies performed by Danatzko, Sezen and Chen [9] 
Puskas and Virag [10], Naik [11] and others [12][13] are 
emphasizing that the structural system established in design 
phase has high influence on the impact of the entire structure, 
but the embedded materials have the largest influence on the 
environmental impact of the specific structure.  

II. CASE STUDY: THREE-STOREY BUILDING 
General dilemma in realisation of current social and public 

buildings is which type of structure to be used? Reinforced 
concrete frame structure with masonry infill walls or load 
bearing masonry walls with reinforced concrete tie-beams and 
pillars? Differences to be considered are given by the cost of 
the realization, the available technology and the construction 
time, the conditions given by the architectural concept, but 
also the different evolution of the norms ruling the reinforced 
concrete and masonry structures. Unfortunately environmental 
impact of structural solution is not yet a current criterion.  

For the three-storey building shown on Fig. 2 the same 
dilemma raised: which structure to be preferred? Since the 
architecture is simple to be solved by any of the two structural 
solutions (Fig. 3 and Fig. 4), for the given building the 
structural differences are given mostly by the differences in the 
applicable design codes [13] to [2]. For both structural 
solutions (Fig. 3 and Fig. 4) the same procedure for the design 
of the complete structure has been performed. It is important 
to be noticed that also in case of the reinforced concrete frame 
building for all the external and internal walls masonry has 
been chosen, even if in some cases lightweight partitioning 
walls could be used. Since the applicable norms for the design 
of the structure are different studied situations also important 
difference in quantities appear. In case of masonry even the 

wall thicknesses are presenting differences since they are 
established according to different codes.  

 
Fig. 2 Floor layout – Masonry bearing walls with RC pillars 

 

 
Fig. 3 Floor layout – RC frame structure with masonry infill walls 

 

 
Fig. 4 Floor layout – Masonry bearing walls with RC tie-beams and 

pillars 
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The building has been considered to be placed in a seismic 
area characterised by the upper limit of the period of the 
constant spectral acceleration branch Tc=0.7 sec and the 
design ground acceleration ag=0.15g, corresponding to 
medium ductility area. For permanent and variable loads the 
same values have been taken into consideration, including live 
and wind loads. 

Since no material quality influence has been aimed the 
material qualities for the two cases have been considered 
unchanged. Quantities of materials obtained for the case 1 
(reinforced concrete frame structure with masonry infill walls) 
are presented in Table I to Table IV. Due to technological 
differences between the studied structural solutions also the 
formwork quantity shows important variations.  

 
Table I: Concrete quantities in Case 1 

Level Type No. Quant. / 
type [m3] 

Quantity 
[m3] 

1 Column 24  0.43   10.26  
2÷3 Column 48  0.33   15.84  
1÷3 Long. beam 12  1.39   16.68  
1÷3 Tran. beam 18  1.65   29.70  
1÷3 Slab 3  31.05   93.15  

TOTAL 165.63 
 

Table II: Rebar quantities in Case 1 

Structural element Quantity [kg] 

Longit. beam 2,604.83  
Transv. beam 3,852.66  

Slab 5,299.46  
Column         11,393.48  
Total       23,150.43  

 
Table III: Masonry quantities in Case 1 

Level Pos. Thickness 
[m] 

No. 
levels 

Masonry 
[m3] 

1 
Ext. 0.30  1          61.94  
Int. 0.20  1          55.13  

2÷3 
Ext. 0.30  2        114.41  
Int. 0.20  2        100.51  

TOTAL 331.992 
 

Table IV: Formwork quantities in Case 1 

Level Type No. Quant. / 
type [m2] 

Quantity 
[m2] 

1 Column 24 5.70  130.10  
2÷3 Column 48 4.44  199.72  
1÷3 Long. beam 12 11.10  133.20  
1÷3 Tran. beam 18 11.28  203.04  
1÷3 Slab 3 310.50  940.50  

TOTAL 1,606.56 

The material quantities for the case 2 are shown in Table V 
to Table VII.  

 
Table V: Concrete quantities in Case 2 

Level Type No. Quant. / 
type [m3] 

Quantity 
[m3] 

1 Pillar 24 0.43  10.26  
2÷3 Pillar 48 0.33  15.84  
1÷3 Tie, long. ext. 6 0.95  5.70  
1÷3 Tie, long. int. 6 0.79  4.74  
1÷3 Tie, tran. ext. 6 0.72  4.32  
1÷3 Tie, tran. int. 12 0.62  7.44  
1÷3 Slab 3 40.37  121.10  

TOTAL 169.40 
 
Table VI: Rebar quantities in Case 2 

Structural element Quantity [kg] 

Pillars 7,144.13  
Slabs 5,150.00  

Transv. tie beams 3,021.85  
Longit. tie beams 2,936.78  

Horiz. joint 2,955.12  
Total 21,207.88 

 
Table VII: Masonry quantities in Case 2 

Level Pos. Thickness 
[m] 

No. 
levels 

Masonry 
[m3] 

1 
Ext.           0.30  1 65.85  
Int.           0.25  1 72.98  

2÷3 
Ext.           0.30  2 122.23  
Int.           0.25  2 133.77  

TOTAL 394.83 
 
Table VIII: Formwork quantities in Case 2 

Level Type No. Quant. / type 
[m2] 

Quantity 
[m2] 

1 Pillar 24 4.275 ÷ 1.425  79.80  
2÷3 Pillar 48 3.33 ÷ 1.11  124.32  
1÷3 Tie, long. 12 6.48  77.70  
1÷3 Tie, trans. 18 4.56  82.08  
1÷3 Slab 3 310.50  938.00  

TOTAL 1,301.90 
 
Significant variation of the material quantities can be 

remarked. Due to the already mentioned technological 
differences in the construction of the structures the formwork 
quantity decreases for Case 2 with 23.4%. In similar way also 
the reinforcement quantity decreases for Case 2 with 9.2% 
with respect to Case 1, mainly due to the column/pillar and 
beam/tie beam differences.  Even if the size of the pillars and 
tie beams is lower in Case 2 than the size of the columns and 
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beams in Case 1, due to the excessive imposed minimum 
thickness of the slab the concrete quantity increases with 2.3% 
in Case 2 with respect to Case 1. Due to the minimum 
thickness provision for the load bearing masonry walls also the 
masonry quantity increases for Case 2 with 18.9% with respect 
to Case 1. 

III. ENVIRONMENTAL IMPACT ASSESSMENT RESULTS 
For the environmental impact estimation of the structure the 

Athena Impact Estimator for Buildings life cycle assessment 
software has been used [21]. The environmental impact 
estimation of the structural solutions is made by their 
embedded material. The analysis of the environmental impact 
considers the same service conditions for the buildings and the 
same building life expectancy. The analysis has been done 
using the previously presented material quantities. 

The total energy consumption for the studied cases is 
presented in Table IX and Fig. 5. 

 
Table IX: Total energy consumption comparison 

Structural solution Total Energy 
Consumption [MJ] 

Case 1                  4,558,673.01   
Case 2                  5,212,523.56   

 

 
Fig. 5 Comparison of total energy consumption 

 
Table X emphasizes the differences in the solid waste 

potential of each structural solution. The corresponding graph 
is shown in Fig. 6. 

 
Table X: Land emissions comparison 

Material ID Case 1 Case 2 
Concrete Solid Waste 

[kg] 8,427.75 8,619.58 

Blast Furnace Dust [kg] 246.50 252.11 

Other Solid Waste [kg] 21,322.73 25,053.27 

 
 

 
Fig. 5 Land emissions comparison 

 
Quantities of resources used for the studied cases are 

presented in Table XI. Fig. 6 presents the comparison of the 
fossil fuel consumption by life cycle stages of the two 
structural cases. 
 
Table XI: Resource use 

Material ID Case 1 Case 2 
Ash kg 241.22   246.71   

Carbon dioxide, in 
air kg 

433.78   397.38   

Clay & Shale kg 10,900.95   11,149.07   
Coal kg 77,857.22   88,169.79   

Coarse Aggregate 
kg 

196,172.17   200,637.36   

Crude Oil L 12,238.85      13,488.13   
Dolomite kg 1,736.96        1,591.21   

Ferrous scrap kg 25,750.34      23,589.63   
Fine Aggregate kg 144,520.46    147,809.97   
Gypsum (Natural) 

kg 
1,694.12        1,732.69   

Iron Ore kg 13,316.84    12,225.16   
Lignite kg 70.32    64.42   

Limestone kg                       
39,502.54   

   40,387.65   

Natural Gas m3 50,551.85   59,299.90   
Sand kg 479.13     490.03   

Semi-Cementitious 
Material kg 

5,782.56   5,914.18   

Uranium kg       0.57    0.66   
Water L 471,366.15   434,424.05   
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Fig. 6 Land emissions comparison 

IV. CONCLUSION 
Even if traditionally load bearing masonry walls with 

reinforced concrete tie-beams and pillars are considered cost 
efficient with respect to reinforced concrete frame structures 
with infill walls, the case study leads to unexpected results: for 
the given building - considering the same placement, 
architecture, load conditions, material quantities – the 
environmental impact of the load bearing masonry wall 
structure is higher than the impact of the reinforced concrete 
frame building with masonry infill walls. Since economy of the 
structural solutions has not been studied results on the 
sustainability of the structural solutions cannot be concluded. 

 Sustainability of a structural solution – as well as the 
environmental impact – depends on the location of the studied 
building due to the high amount of energy needed for all kind 
of transportation. The presented study presumed standard 
conditions for the project location hoping to obtain 
unequivocal results, but unfortunately –due to design standard 
discrepancies like minimum slab thickness in case of load 
bearing masonry walls – the obvious and expected results were 
not achieved. 

In order to establish less environmental impact structural 
solutions use of the presented assessment procedure for similar 
structures can be recommended, but results have to be read 
considering also local conditions. 
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