
 

 

  
Abstract— This paper presents the development and 

implementation of the Hardware-In-the-Loop (HIL) Simulator for 
turbo-prop and turbo-shaft engine control units (ECUs) on a low-cost 
embedded microcontroller. Developed HIL Simulator is a subsystem 
of a complex test device TPR_CPSP_SIM designed for use in the 
development and also in the manufacturing process of the ECUs. 

In this document, we describe the development process of the part 
of the HIL simulator, which runs the engine simulation model and 
provides selected signals for the tested control unit. Main goal for 
this project was to implement turbo-prop and turbo-shaft engine (gas 
turbines) TP100 and TS100 models into the microcontroller and set-
up the peripherals for the interaction with the rest of the system to 
obtain reliable HIL simulation platform. 
 

Keywords—Hardware-In-the-Loop Simulation, Engine Control 
Unit, ECU, CAN Aerospace, Rapid Code Generation.  

I. INTRODUCTION 
NE of the key steps in a modern product development is a 
product testing stage. HIL simulation is often used for 

complex tests of electronical control units (ECUs), sometimes 
also coupled with power electronics (Power-HIL), placing 
additional requirements on the HIL simulation. HIL 
Simulation techniques are widely used specially in automotive 
and aerospace industry [1], [2], [3]. Various hardware and 
software platforms specially designed for HIL simulations are 
commercially available, from low cost [4] to very expensive 
devices [5], [6]. For this project we have selected custom build 
hardware, as there were many specific requirements for the 
signal conditioning. Software was created using Rapid Control 
Prototyping [7] and Rapid Code Generation [8] techniques in 
Matlab/Simulink. 

Test stand TPR_CPSP_SIM is designed for HIL testing of 
the ECUs for turbo-prop and turbo-shaft engines (gas turbines) 
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TP100 and TS100. Part of this test stand is the EVA_PIC32 
module, which task is to run the engine simulation and provide 
respective signal processing. Either the signals are generated 
based on the operator request via the software running on 
external PC, or based on the engine model running on the 
microcontroller which is the core part of the EVA_PIC32 
module. A 32-bit PIC microcontroller implements the model 
(both engines TP100 and TS100), and handles the IO signals 
for the ECU and also the rest of the test stand. Chapter 
SYSTEM DESCRIPTION AND REQUIREMENTS provides more 
detailed description of the whole HIL simulator system, and 
summarizes the requirements for the EVA_PIC32 subsystem. 
In chapter SW IMPLEMENTATION we describe the 
implementation of the engine model, and how the peripherals 
are handled. 

II. SYSTEM DESCRIPTION AND REQUIREMENTS 

 
Fig. 1: HIL system scheme 

Fig. 1 shows the scheme of the HIL system setup, individual 
components and related items are described below: 

A. System under test: Engine Control unit (UNIS) 
The ECU is an electronic device intended for control of 

TP100 / TS100 gas turbine engines (manufactured by PBS 
Velká Bíteš a.s., Czech Republic). The ECU also provides +28 
V DC power supply for other onboard devices. There are two 
types of ECU: one for turbo-prop engine, and one for turbo-
shaft engine. They are both very similar in design. 

Main functions of the ECU are the following: 
• regulation of turbine rational speed to desirable value (0 

to 60000 rpm) 
• regulation of the free turbine speed 
• turbine start and stop regulation 
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• onboard electric supply 
• turbine operational parameters monitoring and checking 

B. TP100 / TS100 engines (PBS) 
TP100 is turboprop engine designed for use in ultralight 

airplanes (piloted as well as UAVs) and TS100 is a turboshaft 
engine intended for use in ultralight helicopters. Both engines 
are based on the TJ100 turbojet engine. In a simplified way, 
the TJ100 works as the gas generator driving the free turbine. 
The main mechanical difference between TP and TS variant is 
the gearbox, where the TP100 nominal speed is 2158 rpm, and 
TS100 has nominal speed of 6000 rpm. 

C. TPR_CPSP_SIM 
Test stand TPR_CPSP_SIM is a HIL simulator designed for 

manual and automatic HIL tests of the ECUs. Tests are 
managed by the user from an application (created by UNIS) 
running on external PC. 

TPR_CPSP_SIM enables two modes of operation: Tester 
and Simulator. The Tester mode is designed to inspect 
individual functions of the system, such as analogue and 
digital read-outs, communication, software functionality, etc. 
The Simulator mode is using the TP100 / TS100 engine model 
for the HIL test, in this mode, the ECU is running as it would 
be with a real engine in the aircraft. Mode selection is done 
using the switch on the TPR_CPSP_SIM front panel. 

Key components of the TPR_CPSP_SIM are: 
• Central control unit EVA_CPU_Intel, which provides 

communication interface between EVA_PIC32 
(UART), ECU (CAN), and PC (RS232). 

• EVA_PIC32, module described by this document, 
implements the TP100 / TS100 engine model and part 
of the signal processing for the interaction with the 
System-Under-Test (SUT) (ECU) 

• BLDC Electronic Speed Controller (ESC) and BLDC 
motor M5 representing the jet engine. M5 is 
mechanically connected with M3 – BLDC motor used 
as starter-generator, driven by ECU. 

• Fuel pumps M1 and M2, connected together with BLDC 
motor M4 creating the load for both fuel pumps by 
being permanently loaded with resistors. M4 is also 
connected to EVA_PIC32 for speed sensing. 

• Relay and I/O boards used for fault condition simulation 
by disrupting selected signals.  

D. EVA_PIC32 engine simulator module 
EVA_PIC32 module is one of the key components of the 

TPR_CPSP_SIM HIL simulator. Its purpose in the system is to 
provide signals generated by the TP100 / TS100 engine for the 
ECU. These signals are, depending on the mode of operation 
(Tester / Simulator), generated either by the user through an 
external application, or by the engine model running on the 
EVA_PIC32 microcontroller. 

Key functions of the EVA_PIC32 are: 
• Communication with the EVA_CPU_Intel via UART 

using CAN Aerospace protocol. 

• Generate signal representing the speed of the free turbine 
(doubled signal: nVTa, nVTb) 

• Drive the ESC for the BLDC motor M5 representing the 
jet engine. 

• Check the speed of the fuel pump through the M4 motor. 
• In the Simulator mode, run the TP100 / TS100 engine 

model and handle respective signals accordingly. 
Tester / Simulator switch is directly connected to the 

EVA_PIC32 as a digital input. Next, there is a STOP button, 
which when pushed resets the module to default values, most 
importantly stops all motors. 

Both speed measuring inputs are in form of frequency: 
pulses with 50% duty cycle are connected to the Input Capture 
peripheral. Frequency is directly proportional to the speed. 
Signal generated for the ESC is standard RC signal: 100-
400Hz and pulse width between 1ms and 2ms. 

Communication with the rest of the system is realized 
through the UART peripheral, and the protocol used is the 
CAN Aerospace, data are transmitted using the HEX 
representation. 

III. SW IMPLEMENTATION 
Software for the 32-bit PIC microcontroller is created using 

the Rapid-Control-Prototyping and Rapid-Code-Generation 
techniques enabled by MATLAB-Simulink Embedded Coder 
together with Kerhuel Toolbox. This set of tools allows us to 
generate the C code (including microcontroller setup and 
peripheral handling) for the microcontroller directly from 
MATLAB Simulink. This is very convenient way especially 
for the development phase, when the model of the engine is 
being often modified during the development phase. 
Nevertheless, some functionality had to be coded manually in 
C code, as the Kerhuel Toolbox does not enable all the 
functionality needed. 

This section describes the requirements in more technical 
details and explains how they have been implemented and 
fulfilled. 

A. System settings 
The core of the EVA_PIC32 board is a 32-bit PIC 

microcontroller pic32mx320f128h clocked with external 
10MHz crystal and scaled up to 80MIPS. Main execution loop 
time step is set to 0.01s (100Hz), all the functions (if enabled) 
are executed at this rate. Actual functionality is determined by 
the state-machine implemented using Stateflow (MATLAB 
Simulink Blockset). State machine is in detail described 
bellow in section D. Overall system performance is 
summarized in section E. 

B. CAN Aerospace protocol 
CAN Aerospace protocol [9] is data format definition 

designed for airborne applications using microcontrollers with 
CAN peripheral. However in this case, ACAN protocol is used 
over the UART simply by taking the data part of the CAN 
message. 

To have the complete message, the information about the 
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length of the data (0-8), and the CAN ID is added before the 
actual message. As the CAN ID could range from 0 to 2031 
(11-bit identifier), it has to be represented by two bytes: 
CAN_ID High, and CAN_ID Low. Furthermore the CAN_ID 
is aligned by bit-shift by 5 bits to the left, before it is split. 
This is due to convention used by the third-party UART-to-
CAN converter which is used inside the TPR_CPSP_SIM 
simulator. 

 
Fig. 2 ACAN General message format [1] 

As an example we show how the “Low priority Node 
Service data” (NSL) message is transmitted over UART: NSL 
message type is defined over the CAN-ID range of 2000-2031. 
UNIS uses this messages for read and write operations on 
control registers. Where the D1 – Node ID specifies the target 
control unit, D2 – Data Type specifies the data type of the data 
in the message (for read register is D2 = 0: “No data”), D3 – 
Service Code determines the type of operation, where 102 
means RCRS – Read Configuration Register Service, and 103 
means SCRS – Set Configuration Register Service. These 
messages are defined internally by UNIS. D4 – Message Code 
then identifies the register. In Table I we show how the ACAN 
message asking node with ID 211 to send value of register 150 
(RCRS) is transmitted over UART. 

Data are transmitted using the HEX representation: Byte (0-
255) is taken in the hexadecimal notation (0x00-0xFF), split 
into two characters, and their representation is sent in Byte 
representation via the UART. This method enables simple way 
to delimit the message frames. Data frame is terminated with 
carriage return character. 

TABLE I. SENDING RCRS FOR REGISTER 150 TO NODE 211 

  

Data length 

CAN_ID = 2000 D1 D2 D3 D4 term
ination character 

CAN
_ID 

High 

CAN
_ID 

Low
 

N
ode ID 

Data 
Type 

Service 
Code 

M
essage 
Code 

DEC 4 250 0 211 0 102 150 

HEX 04 FA 00 D3 00 66 96 

UART 48 52 70 65 48 48 68 51 48 48 54 54 57 54 13 
Implementation of the receiver is done in two while loops: 

inner loop reads the UART buffer until it founds the 
termination character, or until the buffer is empty. If the 
termination character is found, then the complete formatted 
message is sent for processing. Outer loop checks only if the 
buffer is empty. If the buffer is empty, the receiver loop ends 

until the next time step iteration. 
Messages transmitted from the EVA_PIC32 are basically of 

two kinds: response to received message, which are handled 
directly by the received message processing function, and data 
requests based upon the actual mode of operation by 
individual function blocks – inside enabled subsystems. 

C. IO Signals 
This section discusses individual digital inputs and outputs 

aside from UART communication, which has been described 
in the previous section. 

1) STOP button and Tester/Simulator switch 
To ensure the safety of the operator, tested control unit, and 

test-stand itself, STOP button has to be present on the 
TPR_CPSP_SIM tester. It is placed on the front panel of the 
device. This button is connected to the EVA_PIC32 board, 
and when pushed, all the driving signals need to be reset to 
their default values. This applies above all to the signal driving 
the ESC controller for the BLDC motor M4, and the free 
turbine speed signal. 

Switching between Tester and Simulator modes is done by 
the Tester / Simulator switch, which is also on the 
TPR_CPSP_SIM tester front panel. If the state of the switch 
changes the state machine controlling the mode of operation 
goes through the stop procedure and switches the mode. 
Further description is below in the section D. 

2) Driving M5 with ESC 
Motor M5 represents the jet engine, and is connected to M3, 

which represents the starter-generator. M3 motor works in the 
motor mode (driven by the ECU) while the Tx100 engine is 
starting, after the jet engine goes to stable run mode, M3 is 
used in the generator mode, producing the power for the 
onboard electronics (through the ECU). 

Motor M5 is a BLDC motor, and it is driven by the 
customized ESC with fast RC signal – control frequency is up 
to 400 Hz, with the standard pulse width between 1ms and 
2ms. Signal for the ESC is generated by the PIC 
microcontroller using the Output Compare peripheral. As the 
pulse width ranges from 1ms (zero speed) to 2ms (full speed), 
we have decided that the 8-bit resolution would be sufficient. 
So the pulse width between 1 and 2 ms was divided into 256 
values, with 0 representing 1ms, and 255 representing 2ms. 
Timer 3 is used as a time base for the OC3 providing the 
PWM signal. Timer 3 is scaled from the main 80 MHz clock 
by the factor of 64 down to 1.25 MHz, and the period register 
is set to 12499. This sets the Timer 3 for 100Hz period. OC3 
is configured for the PWM mode with fault pin disabled 
(OCM = 0b110), and the secondary compare register is by 
default (and by the reset) set to OC3RS = 1250, generating the 
1ms width pulses. Function which sets the secondary compare 
register has lower saturation set to 1250 (1ms) and upper 
saturation set to 2500 (2ms), ensuring the valid signal for the 
ESC. OC3 is enabled at the TPR_CPSP_SIM tester power-up 
and unless the value is changed by the operator (in tester 
mode), or by the running engine model (in simulator mode), it 
generates the 1ms pulses, so the M5 remains still. 
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3) Free turbine signal generation 
Signals nVTA and nVTB are doubled signal representing 

the output of the free turbine speed sensor. This signal was 
defined as square wave signal, with frequency ranging from 60 
to 6000Hz, with step of 1Hz, and maximal error of 0.08%. 

Both signals are identical, to generate nVTA OC1 is used, 
and for nVTB OC2 is used. We will describe how these 
signals are generated on the nVTA, as these methods apply 
also for the nVTB. 

Since the signal is defined as square wave signal, output 
compare peripheral is used in the PWM mode with fault pin 
disabled (OCM = 0b110). In this case, the duty cycle is 50% 
and the period (frequency) is variable. To guarantee the 
maximal error of 0.08% and required frequency range, we had 
to implement timer prescaller switching. As a clock source for 
the Output Compare, Timer 2 is used, and the prescaller is set 
to 1, 8, or 64, depending on the frequency generated. Fig. 3 
shows achieved accuracy for the generated frequency. 

Maximum theoretical error is calculated from period 
T corresponding to each frequency f , and prescaller 

resolution pst  ( 0.0125 sµ  for 1x prescaler, 0.1 sµ (for x8 

prescaler), 0.8 sµ  for x64 prescaler). 
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Fig. 3 Generated frequency - achieved accuracy 

Reason for the prescaller switching is the wide frequency 
range and low error tolerance: to be able to generate as low 
frequency as 60Hz, prescaller with factor of 64 has to be used: 

With 16-bit timer1 the prescaller factor of 1 allows 
generating frequencies down to 1220Hz, prescaller factor of 8 
allows frequencies down to 152Hz and prescaller factor of 64 
allows frequencies down to 19 Hz. However we cannot use the 
prescaller factor of 64 as the low error requirement is not 
achievable with it. To illustrate this problem, we will calculate 

 
132-bit timer is not available, due to the fact that for OC and IC 

peripherals are available only two 16-bit timers: T2 and T3. These would be 

the period register for the frequency of 6000Hz using the 
prescaller factor of 64: 

 ( )( )80,000,000 / 64 / 6,000 208.3=    (1) 

Since the Output Compare peripheral works only with 
integer numbers, we have to round the value to the closest 
integer (208) to calculate the frequency actually generated. In 
this case, we will get: 

 ( )( )80,000,000 / 64 / 208 6009.615Hz=   (2) 

Since the maximum allowed error is 0.08%, which at 
6000Hz is 4.8Hz and at 60Hz is 0.048 Hz, we can see that we 
need better resolution – lower prescaller factor. 

To solve this problem, timer prescaller switching was 
implemented in a following way: 

• Prescaller factor 1: freq. from 1221Hz up to 6000Hz 
• Prescaller factor 8: freq. from 153Hz up to 1220Hz 
• Prescaller factor 64: freq. from 60Hz up to 152Hz 
This implementation allows us to keep the error of nVTA 

and nVTB signals bellow 0.015%. 
Default value for nVTA and nVTB is 0Hz – logic level on 

OC1 and OC2 pins is held low, and Output Compare is off. 
First valid setting of the free turbine speed register turns the 
Output Compare peripherals on and starts the pulses. If the 
STOP button is pressed, both pins are driven low and 
respective Output Compare channels are disabled. 

4) Starter-generator speed measurement 
Measurement is done using the Input Capture peripheral 

which reads the square signal from the motor (after voltage 
level conversion). IC4 is used for the measurement. Measured 
frequency range is from 500Hz up to 4000Hz, which 
corresponds to the speed range of 7500rpm…60000rpm 
( 15n f= ⋅ ). 

Speed of the starter-generator motor is also used in the 
control loop for driving the M5. As the ESC does not provide 
any speed feedback, or characteristics about the result speed, 
speed of the M5 is assumed to be the same as the speed of the 
starter-generator M3, since they are connected together 
mechanically. 

5) Fuel pump speed measurement 
Fuel pump speed is determined in a very similar way as the 

speed of the starter-generator described in section 4). For the 
signal measurement IC1 is used (also configured with Timer3 
as clock source). Frequency measured is assumed in range of 
150Hz…750Hz, corresponding to speed range of 
3000rpm…15000rpm ( 20n f= ⋅ ). Speed of the fuel pump 
determines the output of the jet engine, and it is the only input 
to the TP100 / TS100 simulator model. 

D. System modes of operation 
As mentioned before, there are two modes of operation: 

tester mode, and simulator mode. Beside this, some other 
events need to be considered, such as STOP button and 

                                                                                                     
both consumed to form one 32-bit timer, but T3 is used for OC3, which 
provides the control signal for ESC. 
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switching between the tester / simulator mode. To implement 
these features state machine programmed in Stateflow 
(MATLAB Simulink Blockset) is used. Inputs for the 
Stateflow besides control registers are functions reading the 
digital inputs: tester/simulator switch, and the STOP button. 
State machine determines the actual mode of operation and 
handles the enabling of the correct subsystems. 

Both modes of operation are described in the sections 
below. However there are two significant events that need to 
be checked in parallel: 

• STOP button pressed: 
o sets the ESC signal to default value (1ms pulse) 
o sets the free turbine signals to default value (zero) 
o stops the operation of all tester / simulator subsystems 

• Tester/Simulator switch is toggled: 
o Performs the STOP sequence described above. 

1) Tester mode 
Tester mode is intended for calibration and production 

testing of the ECUs. It is fully manual mode – all actions have 
to be issued by an operator via external interface. Main 
functions of the tester mode are: 

• measure the speed of fuel pump nFPump 
• measure the speed of the starter-generator nOut 
• drive motor M5 via the ESC pwmM5 
• simulate the free turbine speed signals nVTA, nVTB 
From the software view of the state machine: Transition 

from the default case is made in case that the STOP button is 
released and the switch is in the Tester position. First, the 
tester initialization is executed: this ensures the reset of all 
control registers, and that the simulator subsystems are 
disabled. In the tester mode, only incoming ACAN messages 
are handled, there are no messages generated by the 
microcontroller (aside from responses to the incoming 
commands). 

2) Simulator mode 
Simulator mode is intended for the semi-automated and for 

the automated HIL tests. In this mode, the engine model 
(TP100 / TS100) is run based on the input commands and 
provides feedback to the tested ECU. Engine model is selected 
at the end of the simulator initialization sequence. Selection is 
based upon the state of the register R120 (set by the user) 
designated for this purpose. Initialization sequence enables the 
ACAN communication, then the model waits until all 
conditions are met: 

• Starter-generator speed is over 6000rpm 
• Fuel pump speed is over 3000rpm 
• Ignition is on 
• Fuel valve is open 
• Output temperature is higher than Tcomb 
If all conditions are met, state machine decides which model 

(TP100 / TS100) to use, based upon the value in R120 and 
switches to the “rev-up” mode. The “rev-up” mode simulates 
the start-up and ignition of the engine, after that the transition 
to the state “simulator_run_Tx100” is executed. This state 
enables the respective model and in case of TS100 also ACAN 

request for the R17, which stores the settings of the collective. 
Model runs continuously as long as the fuel valve is open, 

or until the STOP button is pressed, or the mode of operation 
is changed (tester / simulator modes). When the model 
execution is stopped, the model is disabled and all the outputs 
are set to default values. After that the state machine switches 
to the default state and waits for the next run. 

E. System performance 
To measure the system performance in the terms of the 

microcontroller load, “busy flag” method is used: At the 
beginning of each computational step selected digital output 
pin is set high, and after all the functions have been handled, it 
is set low. This will give us 100Hz square wave signal (with 
0.01s time step), where the duty cycle represents the actual 
work load of the microcontroller. However, this method does 
not consider all the interrupt routines, but they are considered 
to have a minor effect on the result. More significant than the 
interrupt routines is the serial communication. 

Measured workloads: 
• Tester mode:      8 % 
• TS100 simulator mode:  30 % 
• TP100 simulator mode:  28 % 
Code was compiled using Microchip C30 compiler; 

following are the memory usage statistics: 
• RAM used:   6254 bytes   (38%) 
• Flash used:   70500 bytes  (49%) 

IV. CONCLUSION 
Software for the EVA_PIC32 board described in this paper 

was created as a cooperative project between University of 
technology Brno and UNIS company. Results are used by 
UNIS and their customer (PBS) during the unit manufacturing 
and assembly process of the ECUs and the Tx100 engines. 

Presented work describes how the methods of Rapid-Code-
Generation were used in the development process of the HIL 
simulator subsystem. It shows, that not all of the required 
functionality could be created using RCG methods (i.e.: 
interrupt routines). However RCG is still a substantial asset as 
it enables very clear arrangement of the “source code” in the 
MATLAB Simulink, ease of implementation of the changes, 
and also ease of implementation of the algorithms created in 
MATLAB Simulink. Some of the unimplemented features 
could be taken as an inspiration for developers as an idea on 
what to improve. 

REFERENCES   
[1] Todd R., Forsyth A.J., "HIL emulation of all-electric UAV power 

systems," Energy Conversion Congress and Exposition, 2009. ECCE 
2009. IEEE , vol., no., pp.411,416, 20-24 Sept. 2009 

[2] Vejlupek J., Chalupa J., Grepl R., “Model Based Design of Power HIL 
System for Aerospace Applications”, 10th International Conference 
Mechatronics, (September, 2013, Brno) 2013 

[3] Sova V., Grepl R., “Hardware in the Loop Simulation Model of BLDC 
Motor Taking Advantage of FPGA and CPU Simultaneous 
Implementation”, 10th International Conference Mechatronics, 
(September, 2013, Brno) 2013 

Communications, Circuits and Educational Technologies

ISBN: 978-1-61804-231-6 56



 

 

[4] Bin Lu,  Xin  Wu,  Figueroa H., Monti A., "A  Low-Cost  Real-Time  
Hardware-in-the-Loop Testing Approach of Power Electronics 
Controls," Industrial Electronics, IEEE Transactions on , vol.54, no.2, 
pp.919,931, April 2007 

[5] National Instruments – NI Power Electronics RCP and HIL System 
http://sine.ni.com/nips/cds/view/p/lang/cs/nid/211217 

[6] dSPACE – HIL Simulation Systems 
http://www.dspace.com/en/pub/home/products/systems/ecutest.cfm  

[7] Grepl R., “Real-Time Control Prototyping in MATLAB/Simulink: 
review of tools for research and education in mechatronics”, IEEE 
International Conference on Mechatronics (ICM 2011-13-15 April, 
2011, Istanbul), 2011 

[8] Lamberský V., Grepl R. “Benchmarking Various Rapid Control 
Prototyping Targets Supported in Matlab/Simulink Development 
Environment”, 10th International Conference Mechatronics, (September, 
2013, Brno) 2013 

[9] CANaerospace - the Airborne CAN Interface Standard 
http://www.stockflightsystems.com/canaerospace.html 

Communications, Circuits and Educational Technologies

ISBN: 978-1-61804-231-6 57

http://sine.ni.com/nips/cds/view/p/lang/cs/nid/211217
http://www.dspace.com/en/pub/home/products/systems/ecutest.cfm
http://www.stockflightsystems.com/canaerospace.html



