

Abstract— This paper presents the development and

implementation of the Hardware-In-the-Loop (HIL) Simulator for
turbo-prop and turbo-shaft engine control units (ECUs) on a low-cost
embedded microcontroller. Developed HIL Simulator is a subsystem
of a complex test device TPR_CPSP_SIM designed for use in the
development and also in the manufacturing process of the ECUs.

In this document, we describe the development process of the part
of the HIL simulator, which runs the engine simulation model and
provides selected signals for the tested control unit. Main goal for
this project was to implement turbo-prop and turbo-shaft engine (gas
turbines) TP100 and TS100 models into the microcontroller and set-
up the peripherals for the interaction with the rest of the system to
obtain reliable HIL simulation platform.

Keywords—Hardware-In-the-Loop Simulation, Engine Control
Unit, ECU, CAN Aerospace, Rapid Code Generation.

I. INTRODUCTION
NE of the key steps in a modern product development is a
product testing stage. HIL simulation is often used for

complex tests of electronical control units (ECUs), sometimes
also coupled with power electronics (Power-HIL), placing
additional requirements on the HIL simulation. HIL
Simulation techniques are widely used specially in automotive
and aerospace industry [1], [2], [3]. Various hardware and
software platforms specially designed for HIL simulations are
commercially available, from low cost [4] to very expensive
devices [5], [6]. For this project we have selected custom build
hardware, as there were many specific requirements for the
signal conditioning. Software was created using Rapid Control
Prototyping [7] and Rapid Code Generation [8] techniques in
Matlab/Simulink.

Test stand TPR_CPSP_SIM is designed for HIL testing of
the ECUs for turbo-prop and turbo-shaft engines (gas turbines)

This work was supported by the European Commission within the FP7

project Efficient Systems and Propulsion for Small Aircraft ‟ESPOSA”,
contract No. ACP1-GA- 2011-284859-ESPOSA.

J. Vejlupek is a PhD candidate at the Brno University of Technology –
Faculty of Mechanical Engineering. His current research focuses on Hardware
in the Loop simulation, Rapid Control Prototyping and Rapid Code
Generation for embedded applications. (e-mail: vejlupek@fme.vutbr.cz)

M. Jasanský is with the UNIS, a.s. company, Division of Aerospace and
Advanced Control. (e-mail: mjasansky@unis.cz)

V. Lamberský is a PhD candidate at the Brno University of Technology –
Faculty of Mechanical Engineering. His current research focuses on Rapid
Code Generation for embedded applications.

R. Grepl is a Associate Professor at the Brno University of Technology –
Faculty of Mechanical Engineering.

TP100 and TS100. Part of this test stand is the EVA_PIC32
module, which task is to run the engine simulation and provide
respective signal processing. Either the signals are generated
based on the operator request via the software running on
external PC, or based on the engine model running on the
microcontroller which is the core part of the EVA_PIC32
module. A 32-bit PIC microcontroller implements the model
(both engines TP100 and TS100), and handles the IO signals
for the ECU and also the rest of the test stand. Chapter
SYSTEM DESCRIPTION AND REQUIREMENTS provides more
detailed description of the whole HIL simulator system, and
summarizes the requirements for the EVA_PIC32 subsystem.
In chapter SW IMPLEMENTATION we describe the
implementation of the engine model, and how the peripherals
are handled.

II. SYSTEM DESCRIPTION AND REQUIREMENTS

Fig. 1: HIL system scheme

Fig. 1 shows the scheme of the HIL system setup, individual
components and related items are described below:

A. System under test: Engine Control unit (UNIS)
The ECU is an electronic device intended for control of

TP100 / TS100 gas turbine engines (manufactured by PBS
Velká Bíteš a.s., Czech Republic). The ECU also provides +28
V DC power supply for other onboard devices. There are two
types of ECU: one for turbo-prop engine, and one for turbo-
shaft engine. They are both very similar in design.

Main functions of the ECU are the following:
• regulation of turbine rational speed to desirable value (0

to 60000 rpm)
• regulation of the free turbine speed
• turbine start and stop regulation

Hardware-In-the-Loop simulator for turboprop
and turboshaft engine control units

J. Vejlupek, M. Jasanský, V. Lamberský, R. Grepl

O

Communications, Circuits and Educational Technologies

ISBN: 978-1-61804-231-6 52

mailto:vejlupek@fme.vutbr.cz
mailto:mjasansky@unis.cz

• onboard electric supply
• turbine operational parameters monitoring and checking

B. TP100 / TS100 engines (PBS)
TP100 is turboprop engine designed for use in ultralight

airplanes (piloted as well as UAVs) and TS100 is a turboshaft
engine intended for use in ultralight helicopters. Both engines
are based on the TJ100 turbojet engine. In a simplified way,
the TJ100 works as the gas generator driving the free turbine.
The main mechanical difference between TP and TS variant is
the gearbox, where the TP100 nominal speed is 2158 rpm, and
TS100 has nominal speed of 6000 rpm.

C. TPR_CPSP_SIM
Test stand TPR_CPSP_SIM is a HIL simulator designed for

manual and automatic HIL tests of the ECUs. Tests are
managed by the user from an application (created by UNIS)
running on external PC.

TPR_CPSP_SIM enables two modes of operation: Tester
and Simulator. The Tester mode is designed to inspect
individual functions of the system, such as analogue and
digital read-outs, communication, software functionality, etc.
The Simulator mode is using the TP100 / TS100 engine model
for the HIL test, in this mode, the ECU is running as it would
be with a real engine in the aircraft. Mode selection is done
using the switch on the TPR_CPSP_SIM front panel.

Key components of the TPR_CPSP_SIM are:
• Central control unit EVA_CPU_Intel, which provides

communication interface between EVA_PIC32
(UART), ECU (CAN), and PC (RS232).

• EVA_PIC32, module described by this document,
implements the TP100 / TS100 engine model and part
of the signal processing for the interaction with the
System-Under-Test (SUT) (ECU)

• BLDC Electronic Speed Controller (ESC) and BLDC
motor M5 representing the jet engine. M5 is
mechanically connected with M3 – BLDC motor used
as starter-generator, driven by ECU.

• Fuel pumps M1 and M2, connected together with BLDC
motor M4 creating the load for both fuel pumps by
being permanently loaded with resistors. M4 is also
connected to EVA_PIC32 for speed sensing.

• Relay and I/O boards used for fault condition simulation
by disrupting selected signals.

D. EVA_PIC32 engine simulator module
EVA_PIC32 module is one of the key components of the

TPR_CPSP_SIM HIL simulator. Its purpose in the system is to
provide signals generated by the TP100 / TS100 engine for the
ECU. These signals are, depending on the mode of operation
(Tester / Simulator), generated either by the user through an
external application, or by the engine model running on the
EVA_PIC32 microcontroller.

Key functions of the EVA_PIC32 are:
• Communication with the EVA_CPU_Intel via UART

using CAN Aerospace protocol.

• Generate signal representing the speed of the free turbine
(doubled signal: nVTa, nVTb)

• Drive the ESC for the BLDC motor M5 representing the
jet engine.

• Check the speed of the fuel pump through the M4 motor.
• In the Simulator mode, run the TP100 / TS100 engine

model and handle respective signals accordingly.
Tester / Simulator switch is directly connected to the

EVA_PIC32 as a digital input. Next, there is a STOP button,
which when pushed resets the module to default values, most
importantly stops all motors.

Both speed measuring inputs are in form of frequency:
pulses with 50% duty cycle are connected to the Input Capture
peripheral. Frequency is directly proportional to the speed.
Signal generated for the ESC is standard RC signal: 100-
400Hz and pulse width between 1ms and 2ms.

Communication with the rest of the system is realized
through the UART peripheral, and the protocol used is the
CAN Aerospace, data are transmitted using the HEX
representation.

III. SW IMPLEMENTATION
Software for the 32-bit PIC microcontroller is created using

the Rapid-Control-Prototyping and Rapid-Code-Generation
techniques enabled by MATLAB-Simulink Embedded Coder
together with Kerhuel Toolbox. This set of tools allows us to
generate the C code (including microcontroller setup and
peripheral handling) for the microcontroller directly from
MATLAB Simulink. This is very convenient way especially
for the development phase, when the model of the engine is
being often modified during the development phase.
Nevertheless, some functionality had to be coded manually in
C code, as the Kerhuel Toolbox does not enable all the
functionality needed.

This section describes the requirements in more technical
details and explains how they have been implemented and
fulfilled.

A. System settings
The core of the EVA_PIC32 board is a 32-bit PIC

microcontroller pic32mx320f128h clocked with external
10MHz crystal and scaled up to 80MIPS. Main execution loop
time step is set to 0.01s (100Hz), all the functions (if enabled)
are executed at this rate. Actual functionality is determined by
the state-machine implemented using Stateflow (MATLAB
Simulink Blockset). State machine is in detail described
bellow in section D. Overall system performance is
summarized in section E.

B. CAN Aerospace protocol
CAN Aerospace protocol [9] is data format definition

designed for airborne applications using microcontrollers with
CAN peripheral. However in this case, ACAN protocol is used
over the UART simply by taking the data part of the CAN
message.

To have the complete message, the information about the

Communications, Circuits and Educational Technologies

ISBN: 978-1-61804-231-6 53

length of the data (0-8), and the CAN ID is added before the
actual message. As the CAN ID could range from 0 to 2031
(11-bit identifier), it has to be represented by two bytes:
CAN_ID High, and CAN_ID Low. Furthermore the CAN_ID
is aligned by bit-shift by 5 bits to the left, before it is split.
This is due to convention used by the third-party UART-to-
CAN converter which is used inside the TPR_CPSP_SIM
simulator.

Fig. 2 ACAN General message format [1]

As an example we show how the “Low priority Node
Service data” (NSL) message is transmitted over UART: NSL
message type is defined over the CAN-ID range of 2000-2031.
UNIS uses this messages for read and write operations on
control registers. Where the D1 – Node ID specifies the target
control unit, D2 – Data Type specifies the data type of the data
in the message (for read register is D2 = 0: “No data”), D3 –
Service Code determines the type of operation, where 102
means RCRS – Read Configuration Register Service, and 103
means SCRS – Set Configuration Register Service. These
messages are defined internally by UNIS. D4 – Message Code
then identifies the register. In Table I we show how the ACAN
message asking node with ID 211 to send value of register 150
(RCRS) is transmitted over UART.

Data are transmitted using the HEX representation: Byte (0-
255) is taken in the hexadecimal notation (0x00-0xFF), split
into two characters, and their representation is sent in Byte
representation via the UART. This method enables simple way
to delimit the message frames. Data frame is terminated with
carriage return character.

TABLE I. SENDING RCRS FOR REGISTER 150 TO NODE 211

Data length

CAN_ID = 2000 D1 D2 D3 D4 term
ination character

CAN
_ID

High

CAN
_ID

Low

N
ode ID

Data
Type

Service
Code

M
essage
Code

DEC 4 250 0 211 0 102 150

HEX 04 FA 00 D3 00 66 96

UART 48 52 70 65 48 48 68 51 48 48 54 54 57 54 13
Implementation of the receiver is done in two while loops:

inner loop reads the UART buffer until it founds the
termination character, or until the buffer is empty. If the
termination character is found, then the complete formatted
message is sent for processing. Outer loop checks only if the
buffer is empty. If the buffer is empty, the receiver loop ends

until the next time step iteration.
Messages transmitted from the EVA_PIC32 are basically of

two kinds: response to received message, which are handled
directly by the received message processing function, and data
requests based upon the actual mode of operation by
individual function blocks – inside enabled subsystems.

C. IO Signals
This section discusses individual digital inputs and outputs

aside from UART communication, which has been described
in the previous section.

1) STOP button and Tester/Simulator switch
To ensure the safety of the operator, tested control unit, and

test-stand itself, STOP button has to be present on the
TPR_CPSP_SIM tester. It is placed on the front panel of the
device. This button is connected to the EVA_PIC32 board,
and when pushed, all the driving signals need to be reset to
their default values. This applies above all to the signal driving
the ESC controller for the BLDC motor M4, and the free
turbine speed signal.

Switching between Tester and Simulator modes is done by
the Tester / Simulator switch, which is also on the
TPR_CPSP_SIM tester front panel. If the state of the switch
changes the state machine controlling the mode of operation
goes through the stop procedure and switches the mode.
Further description is below in the section D.

2) Driving M5 with ESC
Motor M5 represents the jet engine, and is connected to M3,

which represents the starter-generator. M3 motor works in the
motor mode (driven by the ECU) while the Tx100 engine is
starting, after the jet engine goes to stable run mode, M3 is
used in the generator mode, producing the power for the
onboard electronics (through the ECU).

Motor M5 is a BLDC motor, and it is driven by the
customized ESC with fast RC signal – control frequency is up
to 400 Hz, with the standard pulse width between 1ms and
2ms. Signal for the ESC is generated by the PIC
microcontroller using the Output Compare peripheral. As the
pulse width ranges from 1ms (zero speed) to 2ms (full speed),
we have decided that the 8-bit resolution would be sufficient.
So the pulse width between 1 and 2 ms was divided into 256
values, with 0 representing 1ms, and 255 representing 2ms.
Timer 3 is used as a time base for the OC3 providing the
PWM signal. Timer 3 is scaled from the main 80 MHz clock
by the factor of 64 down to 1.25 MHz, and the period register
is set to 12499. This sets the Timer 3 for 100Hz period. OC3
is configured for the PWM mode with fault pin disabled
(OCM = 0b110), and the secondary compare register is by
default (and by the reset) set to OC3RS = 1250, generating the
1ms width pulses. Function which sets the secondary compare
register has lower saturation set to 1250 (1ms) and upper
saturation set to 2500 (2ms), ensuring the valid signal for the
ESC. OC3 is enabled at the TPR_CPSP_SIM tester power-up
and unless the value is changed by the operator (in tester
mode), or by the running engine model (in simulator mode), it
generates the 1ms pulses, so the M5 remains still.

Communications, Circuits and Educational Technologies

ISBN: 978-1-61804-231-6 54

3) Free turbine signal generation
Signals nVTA and nVTB are doubled signal representing

the output of the free turbine speed sensor. This signal was
defined as square wave signal, with frequency ranging from 60
to 6000Hz, with step of 1Hz, and maximal error of 0.08%.

Both signals are identical, to generate nVTA OC1 is used,
and for nVTB OC2 is used. We will describe how these
signals are generated on the nVTA, as these methods apply
also for the nVTB.

Since the signal is defined as square wave signal, output
compare peripheral is used in the PWM mode with fault pin
disabled (OCM = 0b110). In this case, the duty cycle is 50%
and the period (frequency) is variable. To guarantee the
maximal error of 0.08% and required frequency range, we had
to implement timer prescaller switching. As a clock source for
the Output Compare, Timer 2 is used, and the prescaller is set
to 1, 8, or 64, depending on the frequency generated. Fig. 3
shows achieved accuracy for the generated frequency.

Maximum theoretical error is calculated from period
T corresponding to each frequency f , and prescaller

resolution pst (0.0125 sµ for 1x prescaler, 0.1 sµ (for x8

prescaler), 0.8 sµ for x64 prescaler).

100f ps fe t T= (1)

0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

0.06

0.08

0.1

frequency [Hz]

fre
qu

en
cy

 e
rro

r [
%

]

max x64 error
max x8 error
max x1 error
0.08% limit

Fig. 3 Generated frequency - achieved accuracy

Reason for the prescaller switching is the wide frequency
range and low error tolerance: to be able to generate as low
frequency as 60Hz, prescaller with factor of 64 has to be used:

With 16-bit timer1 the prescaller factor of 1 allows
generating frequencies down to 1220Hz, prescaller factor of 8
allows frequencies down to 152Hz and prescaller factor of 64
allows frequencies down to 19 Hz. However we cannot use the
prescaller factor of 64 as the low error requirement is not
achievable with it. To illustrate this problem, we will calculate

132-bit timer is not available, due to the fact that for OC and IC

peripherals are available only two 16-bit timers: T2 and T3. These would be

the period register for the frequency of 6000Hz using the
prescaller factor of 64:

 ()()80,000,000 / 64 / 6,000 208.3= (1)

Since the Output Compare peripheral works only with
integer numbers, we have to round the value to the closest
integer (208) to calculate the frequency actually generated. In
this case, we will get:

 ()()80,000,000 / 64 / 208 6009.615Hz= (2)

Since the maximum allowed error is 0.08%, which at
6000Hz is 4.8Hz and at 60Hz is 0.048 Hz, we can see that we
need better resolution – lower prescaller factor.

To solve this problem, timer prescaller switching was
implemented in a following way:

• Prescaller factor 1: freq. from 1221Hz up to 6000Hz
• Prescaller factor 8: freq. from 153Hz up to 1220Hz
• Prescaller factor 64: freq. from 60Hz up to 152Hz
This implementation allows us to keep the error of nVTA

and nVTB signals bellow 0.015%.
Default value for nVTA and nVTB is 0Hz – logic level on

OC1 and OC2 pins is held low, and Output Compare is off.
First valid setting of the free turbine speed register turns the
Output Compare peripherals on and starts the pulses. If the
STOP button is pressed, both pins are driven low and
respective Output Compare channels are disabled.

4) Starter-generator speed measurement
Measurement is done using the Input Capture peripheral

which reads the square signal from the motor (after voltage
level conversion). IC4 is used for the measurement. Measured
frequency range is from 500Hz up to 4000Hz, which
corresponds to the speed range of 7500rpm…60000rpm
(15n f= ⋅).

Speed of the starter-generator motor is also used in the
control loop for driving the M5. As the ESC does not provide
any speed feedback, or characteristics about the result speed,
speed of the M5 is assumed to be the same as the speed of the
starter-generator M3, since they are connected together
mechanically.

5) Fuel pump speed measurement
Fuel pump speed is determined in a very similar way as the

speed of the starter-generator described in section 4). For the
signal measurement IC1 is used (also configured with Timer3
as clock source). Frequency measured is assumed in range of
150Hz…750Hz, corresponding to speed range of
3000rpm…15000rpm (20n f= ⋅). Speed of the fuel pump
determines the output of the jet engine, and it is the only input
to the TP100 / TS100 simulator model.

D. System modes of operation
As mentioned before, there are two modes of operation:

tester mode, and simulator mode. Beside this, some other
events need to be considered, such as STOP button and

both consumed to form one 32-bit timer, but T3 is used for OC3, which
provides the control signal for ESC.

Communications, Circuits and Educational Technologies

ISBN: 978-1-61804-231-6 55

switching between the tester / simulator mode. To implement
these features state machine programmed in Stateflow
(MATLAB Simulink Blockset) is used. Inputs for the
Stateflow besides control registers are functions reading the
digital inputs: tester/simulator switch, and the STOP button.
State machine determines the actual mode of operation and
handles the enabling of the correct subsystems.

Both modes of operation are described in the sections
below. However there are two significant events that need to
be checked in parallel:

• STOP button pressed:
o sets the ESC signal to default value (1ms pulse)
o sets the free turbine signals to default value (zero)
o stops the operation of all tester / simulator subsystems

• Tester/Simulator switch is toggled:
o Performs the STOP sequence described above.

1) Tester mode
Tester mode is intended for calibration and production

testing of the ECUs. It is fully manual mode – all actions have
to be issued by an operator via external interface. Main
functions of the tester mode are:

• measure the speed of fuel pump nFPump
• measure the speed of the starter-generator nOut
• drive motor M5 via the ESC pwmM5
• simulate the free turbine speed signals nVTA, nVTB
From the software view of the state machine: Transition

from the default case is made in case that the STOP button is
released and the switch is in the Tester position. First, the
tester initialization is executed: this ensures the reset of all
control registers, and that the simulator subsystems are
disabled. In the tester mode, only incoming ACAN messages
are handled, there are no messages generated by the
microcontroller (aside from responses to the incoming
commands).

2) Simulator mode
Simulator mode is intended for the semi-automated and for

the automated HIL tests. In this mode, the engine model
(TP100 / TS100) is run based on the input commands and
provides feedback to the tested ECU. Engine model is selected
at the end of the simulator initialization sequence. Selection is
based upon the state of the register R120 (set by the user)
designated for this purpose. Initialization sequence enables the
ACAN communication, then the model waits until all
conditions are met:

• Starter-generator speed is over 6000rpm
• Fuel pump speed is over 3000rpm
• Ignition is on
• Fuel valve is open
• Output temperature is higher than Tcomb
If all conditions are met, state machine decides which model

(TP100 / TS100) to use, based upon the value in R120 and
switches to the “rev-up” mode. The “rev-up” mode simulates
the start-up and ignition of the engine, after that the transition
to the state “simulator_run_Tx100” is executed. This state
enables the respective model and in case of TS100 also ACAN

request for the R17, which stores the settings of the collective.
Model runs continuously as long as the fuel valve is open,

or until the STOP button is pressed, or the mode of operation
is changed (tester / simulator modes). When the model
execution is stopped, the model is disabled and all the outputs
are set to default values. After that the state machine switches
to the default state and waits for the next run.

E. System performance
To measure the system performance in the terms of the

microcontroller load, “busy flag” method is used: At the
beginning of each computational step selected digital output
pin is set high, and after all the functions have been handled, it
is set low. This will give us 100Hz square wave signal (with
0.01s time step), where the duty cycle represents the actual
work load of the microcontroller. However, this method does
not consider all the interrupt routines, but they are considered
to have a minor effect on the result. More significant than the
interrupt routines is the serial communication.

Measured workloads:
• Tester mode: 8 %
• TS100 simulator mode: 30 %
• TP100 simulator mode: 28 %
Code was compiled using Microchip C30 compiler;

following are the memory usage statistics:
• RAM used: 6254 bytes (38%)
• Flash used: 70500 bytes (49%)

IV. CONCLUSION
Software for the EVA_PIC32 board described in this paper

was created as a cooperative project between University of
technology Brno and UNIS company. Results are used by
UNIS and their customer (PBS) during the unit manufacturing
and assembly process of the ECUs and the Tx100 engines.

Presented work describes how the methods of Rapid-Code-
Generation were used in the development process of the HIL
simulator subsystem. It shows, that not all of the required
functionality could be created using RCG methods (i.e.:
interrupt routines). However RCG is still a substantial asset as
it enables very clear arrangement of the “source code” in the
MATLAB Simulink, ease of implementation of the changes,
and also ease of implementation of the algorithms created in
MATLAB Simulink. Some of the unimplemented features
could be taken as an inspiration for developers as an idea on
what to improve.

REFERENCES
[1] Todd R., Forsyth A.J., "HIL emulation of all-electric UAV power

systems," Energy Conversion Congress and Exposition, 2009. ECCE
2009. IEEE , vol., no., pp.411,416, 20-24 Sept. 2009

[2] Vejlupek J., Chalupa J., Grepl R., “Model Based Design of Power HIL
System for Aerospace Applications”, 10th International Conference
Mechatronics, (September, 2013, Brno) 2013

[3] Sova V., Grepl R., “Hardware in the Loop Simulation Model of BLDC
Motor Taking Advantage of FPGA and CPU Simultaneous
Implementation”, 10th International Conference Mechatronics,
(September, 2013, Brno) 2013

Communications, Circuits and Educational Technologies

ISBN: 978-1-61804-231-6 56

[4] Bin Lu, Xin Wu, Figueroa H., Monti A., "A Low-Cost Real-Time
Hardware-in-the-Loop Testing Approach of Power Electronics
Controls," Industrial Electronics, IEEE Transactions on , vol.54, no.2,
pp.919,931, April 2007

[5] National Instruments – NI Power Electronics RCP and HIL System
http://sine.ni.com/nips/cds/view/p/lang/cs/nid/211217

[6] dSPACE – HIL Simulation Systems
http://www.dspace.com/en/pub/home/products/systems/ecutest.cfm

[7] Grepl R., “Real-Time Control Prototyping in MATLAB/Simulink:
review of tools for research and education in mechatronics”, IEEE
International Conference on Mechatronics (ICM 2011-13-15 April,
2011, Istanbul), 2011

[8] Lamberský V., Grepl R. “Benchmarking Various Rapid Control
Prototyping Targets Supported in Matlab/Simulink Development
Environment”, 10th International Conference Mechatronics, (September,
2013, Brno) 2013

[9] CANaerospace - the Airborne CAN Interface Standard
http://www.stockflightsystems.com/canaerospace.html

Communications, Circuits and Educational Technologies

ISBN: 978-1-61804-231-6 57

http://sine.ni.com/nips/cds/view/p/lang/cs/nid/211217
http://www.dspace.com/en/pub/home/products/systems/ecutest.cfm
http://www.stockflightsystems.com/canaerospace.html

