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Abstract-Recent advances in machine learning make it 
possible to design efficient prediction algorithms for 
earthquake forecasts. Self Organizing Feature Maps 
(SOFM) technique can be used to detect precursory seismic 
activation or quiescence and make earthquake forecast.Here 
we apply the SOFM method for optimal forecasting of 
large earthquakes in Iran, using the data catalogue 
maintained by IIEES. The purpose of this paper is to 
describe the use of the neural network model to generate 
synthetics data catalogue in the local regions and propose a 
fast algorithm for synthetic earthquake catalog generation 
based on an original catalog. More specifically, we also 
propose a Monte Carlo simulation model which can 
generate data from a small number of earthquake 
aftershocks and discusses the relationship between the 
complexity of an earthquake and its aftershocks. This is a 
very stimulating article about the very important issue of 
making reliable decisions under uncertainty. This article 
shows how machine-learning techniques can be 
complemented with provably valid measures of accuracy 
and reliability. The experiments show this model can open 
new possibilities for earthquake forecasts.  
 
Keywords—Pattern informatics, earthquake, forecasting, 
seismicity, Neural 
 

 I. INTRODUCTION 

 
HE Earth’s crust is clearly extremely complex and 
it is generally accepted that earthquakes are a 

chaotic phenomenon. Thus, as in the case earthquake 
forecasting must be considered on a statistical basis 
(Allamehzadeh and Mokhtari, 2003; Madahizadeh 
and Allamehzadeh, 2009). A 
Fundamental question is whether the statistical 
properties of seismicity patterns can be used to 
forecast future earthquakes. Premonitory seismicity 
patterns were found for some strong earthquakes in 
Iran. 
Premonitory seismicity pattern informatics (PI) 
approach has been proposed by RUNDLE et al. 
(2002), TIAMPO et al. (2002a, b, c).  
This approach is based on the strong space-time 
correlations that are responsible for the cooperative 
behavior of driven threshold systems and arises both 
from threshold dynamics as well as from the mean 
field (long range) nature of the interactions. The PI 

technique can be used to detect precursory seismic 
activation or quiescence and make earthquake 
forecasts.  
The purpose of this paper is to study the applicability 
of the pattern Recognition (PR) algorithm for 
forecasting large earthquakes in Iran. As an example, 
we will present a forecast of large (M>5) earthquakes 
during the time period 1990-2013 in the Alborz 
region: 
the region that includes the epicenter of the 1990 
Rudbar earthquake. First, we will briefly introduce 
the PR method. Next, we will describe the earthquake 
catalogues used in this paper. 
 

II. PATTERN RECOGNITION 
 

We suggest that the SOM is capable of identifying 
cohesive patterns of nonlinear measurements that 
would be difficult to identify using traditional linear 
data reduction procedures and that neural networks 
will be increasingly valuable in the analysis of a wide 
range of complex behaviors. 

In this study we have employed the self-organizing 
map (SOM) in gene expression data 

Analysis (figure 1). The SOM is an unsupervised 
neural network algorithm, which has been used 

with great level of success in various clustering 
and visualization earthquakes aftershocks (see 
Allamehzadeh and Mokhtari, 2003; Allamehzadeh 
and Abbassi, 2005). Moreover, several studies report 
that for a noisy data set the SOM outperforms 
hierarchical clustering and many other clustering 
methods in various critical areas such as noise 
tolerance, speed and robustness (Mangiameli, 
Chen,&West, 1996; Chen et al., 2002; Gibbons & 
Roth, 2002). 

Researchers in China have suggested that neural 
networks ensembles and support vector machines 
could be used to predict the magnitudes of strong 
earthquakes [5, 16], but more research needs to be 
done to corroborate their findings.  

The purpose of this study is analysis and 
visualization of earthquake catalog data obtained 
from IIEES networks on simulation data using the 
SOM. The SOM has been used earlier in clustering 
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aftershocks patterns by Allamehzadeh et al., 2003. 
Rather than attempt to issue earthquake 

predictions, we hope to analyze past data for periodic 
patterns that may advance our understanding of 
earthquake dynamics. 

With the exception of a brief period in the 1970s, 
earthquake prediction was generally considered to be 
infeasible by seismologists. Then, in 1975, Chinese 
scientists ordered the evacuation of Haicheng one day 
before a magnitude 7.3 earthquake struck. This led to 
a flurry of optimism toward earthquake prediction [9, 
11], which was subsequently checked by the failed 
prediction of the magnitude 7.8 Tangshan earthquake 
of 1976. 

Another failure occurred in Parkfield, California in 
the early 1980s. Up to then, magnitude 6.0 
earthquakes had occurred at fairly regular 22-year 
intervals. This led researchers to predict that an 
earthquake would strike by 1993; no such earthquake 
arrived until 2004. To this day, the Haicheng 
earthquake remains the only successful earthquake 
prediction in history.  

This paper describes a method for estimating 
earthquake recurrence interval and coefficient of 
variation from historic earthquake records by using 
SOM algorithms. 

 
 
 
 

 
Fig. 1  Idea of the SOM. All neurons contain a reference 
vector, whose dimension is the same as the dimension 

of the input data. Earthquake location expression pattern is 
compared to all reference vectors and the neuron containing 

the closest reference (black with white boundaries) is 
permitted to update with neurons belonging to the 

neighborhood region (shaded). 
 

 Statistical practice between recurrence estimation 
and earthquake probability calculations can be a 

concern [e.g., Savage, 1991, 1992]. Optimally, we 
would have enough observations of earthquake 
intervals to fill out recurrence PDFs; these would 
eliminate the epistemic uncertainties surrounding 
recurrence parameters, and define the uncertainty 
inherent in earthquake recurrence. 

As will be shown, Machine learning algorithms 
fitting tends to be most useful on short sequences and 
seems primarily sensitive to the histogram of the 
data. Results reflect epistemic uncertainties by 
showing the range and uncertainty in distribution 
parameters that are consistent with observations and 
their uncertainties.  

In many pattern recognition systems, the 
methodology frequently used is the statistical 
approach, whereby decision theory derived from 
statistics of input patterns is used to design a 
classifier 

[13]. Although this paradigm has been successfully 
applied to solve various problems in pattern 
classification, it has difficulty in expressing structural 
information unless an appropriate 

choice of features is made possible. Furthermore, 
this approach requires much heuristic information to 
design a classifier [14]. Neural-networks-based 
paradigms, as new means of 

implementing various classifiers based on 
statistical and structural approach, have been proven 
to possess many advantages for classification because 
of their learning ability and good generalization. 
 

 III.  METHODS 

 
The methods described in this paper differ from 

other recurrence parameter estimation techniques. 
Most commonly, variants of maximum-likelihood 
techniques are applied to observed series to estimate 
recurrence parameters [e.g., Geller, Robert J. and 
Jackson, David D. and Ka- 

gan, Yan Y. and Mulargia, Francesco (1997)]. The 
methods used to extract knowledge from earthquakes 
time series are described in this section. The goal is 
to find patterns in data that precede the appearance of 
earthquakes with a given magnitude by using 
Quadratic Neural Networks (QNN) and Radial Base 
Function (RBF) Neural Networks.  

In many pattern recognition systems, the 
methodology frequently used is the statistical 
approach, whereby decision theory derived from 
statistics of input patterns is used to design a 
classifier 

[13]. Although this paradigm has been successfully 
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applied to solve various problems in pattern 
classification, it has difficulty in expressing structural 
information unless an appropriate choice of features 
is made possible. Furthermore, this approach requires 
much heuristic information to design a classifier [14]. 
Neural-networks-based paradigms, as new means of 
implementing various classifiers based on statistical 
and structural approach, have been proven to possess 
many advantages for classification because of their 
learning ability and good generalization 

[9]–[12], [14]–[16]. Generally speaking, 
multilayered networks (MLNs), usually coupled with 
the back propagation (BP) algorithm, are most widely 
used in face recognition [9]. Yet, two major 
criticisms are commonly raised against the BP 
algorithm: 1) It is computationally intensive because 
of its slow convergence speed and 2) there is no 
guarantee at all that the absolute minima can be 
achieved. On the other hand, RBF neural networks 
have recently attracted extensive interests in the 
community of neural networks for a wide range of 
applications [17]–[29]. The salient features of RBF 
neural networks are as 

follows. 
As the goal is to find patterns that precede quake 

occurrences, the magnitude of the current earthquake, 
Mb, has been forced to be the only attribute in the 
consequent. 

The Mb attribute has been divided in three non-
overlapped intervals: [3.0, 3.5) or small earthquakes, 
[3.5, 4.4) or medium earthquakes, and [4.4, 6.2] or 
large earthquakes (note that the largest retrieved 
earthquake magnitude is 6.2). Tables 1 show the data 

catalog is used for extracted to large, medium and 
small earthquakes, respectively. Note that ΔMw and 
Δt represent the increment of the b–value and the 
time elapsed between the previous and current 
earthquake, respectively. Also, the magnitude of the 
earthquake occurred prior the current one, Mw, has 
been covered only by one rule. Finally, all rules have 
been assessed by means of three well-known and 
widely used indices: Confidence, support, and lift [6]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table1. Earthquakes used in this study 
 

N Date  Location  Magnitude 

 Year Month Day Hour Min Sec  Latitude (N) Longitude (E) Mw 

 
1 1677 1 1 0 0 0  54.2 27.9  6.4 
2 1703 1 1 0 0 0  54.9 26.6  6.8 
3 1824 8 28 0 0 0  52.4 29.8  7.1 
4 1890 3 25 0 0 0  53.7 28.8  7.1 
5 1902 7 9 0 3 38  56.3 27.1  6.3 
6 1927 5 9 0 10 31  56.7 27.7  6.4 
7 1949 4 24 0 4 22  56.5 27.3  6.3 
8 1956 10 31 0 14 3  54.7 27.3  6.6 
9 1961 6 11 0 5 10  54.5 27.8  6.6 
10 1972 4 10 6 2 6  52.8 28.4  6.7 
11 1977 3 21 52 21 18  56.4 27.6  6.7 
12 1990 11 6 53 18 45  55.5 28.2  6.6 
13 1999 3 4 28 5 38  57.2 28.3  6.6 

 
1 1919 10 24 0 20 32  62.05 26.11  5.8 
2 1926 5 19 33 21 13  58.9 26.3  5.7 
3 1929 9 3 0 12 7  62.07 26.59  6.3 
4 1945 11 27 15 21 56  63.5 25  8.0 

Proceedings of the 2014 International Conference on Mathematical Methods, Mathematical Models and Simulation in Science and Engineering

ISBN: 978-1-61804-219-4 199



N Date  Location  Magnitude 

 Year Month Day Hour Min Sec  Latitude (N) Longitude (E) Mw 
5 1972 8 6 20 1 12  61.14 24.99  5.5 
6 1979 1 10 45 15 5  60.99 26.491  6.1 
7 1989 12 7 34 12 59  58.965 25.918  6.0 
8 1992 1 30 0 5 22  62.88 24.25  5.9 
9 2005 3 13 58 3 31  62 26.73  6.0 

 
1 1824 6 2 0 0 0  51.5 29.7  6.1 
2 1864 12 7 0 20 0  45.98 33.38  6.3 
3 1868 8 1 0 20 0  52.5 34.9  6.4 
4 1875 3 21 0 15 0  50.5 30.5  5.9 
5 1890 2 7 0 0 0  51.22 34.18  6.3 
6 1903 9 25 0 1 20  58.23 35.18  6.0 
7 1907 3 31 0 14 12  50 30  6.1 
8 1917 7 15 0 17 58  45.82 33.48  6.3 
9 1923 9 22 0 20 47  56.63 29.51  6.7 
10 1927 11 12 0 14 46  47.38 32.53  6.1 
11 1929 7 15 0 7 44  49.48 32.08  6.1 
12 1937 4 7 0 18 30  52.1 34.8  5.6 
13 1939 11 4 0 10 15  48.52 32.4  6.1 
14 1948 7 30 43 3 30  49.12 31.41  5.8 
15 1957 3 16 46 0 43  52.87 34.91  5.6 
16 1958 5 5 64 5 21  44.79 35.69  5.6 
17 1962 6 29 15 22 35  48.76 32.21  5.7 
18 1972 2 28 85 18 44  51.1 29.74  5.5 
19 1980 12 18 0 12 34  44.25 35.89  6.2 
20 1989 5 27 36 20 8  50.892 30.148  6.0 
21 1998 8 5 15 14 27  46.266 33.183  5.6 
22 2002 9 25 23.9 22 28  49.327 32.076  5.6 
23 2008 8 27 12.5 21 52  47.36 32.23  5.8 
24 2010 7 30 28.2 13 50  59.36 35.17  5.5 

 
1 1868 8 1 0 20 0  52.5 34.9  6.4 
2 1890 2 7 0 0 0  51.22 34.18  6.3 
3 1903 9 25 0 1 20  58.23 35.18  6.0 
4 1923 9 22 0 20 47  56.63 29.51  6.7 
5 1937 4 7 0 18 30  52.1 34.8  5.6 
6 1957 3 16 46 0 43  52.87 34.91  5.6 
7 1962 9 4 20 13 30  49.72 35.56  5.7 
8 2010 7 30 28.2 13 50  59.36 35.17  5.5 

 
1 1641 2 5 0 18 0  46.1 37.9  6.7 
2 1648 3 31 0 24 0  43.5 38.3  6.5 
3 1696 4 14 0 0 0  43.9 39.1  7.0 
4 1715 3 8 0 6 0  43.9 38.4  6.6 
5 1840 7 2 0 19 0  43.9 39.5  7.3 
6 1930 5 6 0 22 34  44.6 38.24  7.1 
7 1957 12 13 0 1 45  47.8 34.55  6.8 
8 1976 11 24 15 12 22  44 39.1  7.0 

 
1 1909 1 23 0 2 48  49.13 33.41  7.4 
2 1920 5 25 0 11 39  46.5 33.5  5.6 
3 1932 5 7 0 14 54  45 36.2  5.7 
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N Date  Location  Magnitude 

 Year Month Day Hour Min Sec  Latitude (N) Longitude (E) Mw 
4 1939 1 25 0 11 2  50.81 30.93  5.7 
5 1941 6 10 0 20 38  46.84 33.5  5.8 
6 1944 6 28 33 2 57  45 36  5.8 
7 1951 6 9 53 11 22  49.8 32.26  6.2 
8 1960 3 24 0 23 21  51 31.25  6.1 
9 1967 1 11 14 11 20  45.66 34.07  5.6 
10 1978 12 14 21 7 5  49.634 32.128  6.2 
11 1988 3 30 43 2 12  50.179 30.845  5.9 
12 2006 3 31 17 1 17  48.73 33.74  6.1 

 
1 1911 4 18 0 18 14  57.05 31.25  6.4 
2 1933 10 5 0 13 29  57.07 34.52  6.2 
3 1948 7 5 0 13 53  57.73 29.88  6.1 
4 1978 9 16 54 15 35  57.382 33.243  7.4 
5 1998 3 14 5 19 40  57.589 30.13  6.6 
6 2005 2 22 12 2 25  56.81 30.76  6.4 

 
1 1903 3 22 0 14 35  59.71 33.16  6.2 
2 1923 11 29 0 3 36  59.4 33.62  5.8 
3 1941 2 16 0 16 39  58.9 33.4  6.2 
4 1947 9 23 0 12 28  58.7 33.7  6.9 
5 1962 4 1 0 0 45  58.87 33.21  5.8 
6 1968 8 31 12 10 47  58.96 34.04  7.1 
7 1979 11 27 34 17 10  59.754 34.057  7.1 
8 1997 6 25 8 19 38  59.435 33.916  5.9 

 
1 1854 11 0 0 0 0  59.38 30.58  5.7 
2 1923 9 14 0 8 10  59.33 28.97  5.8 
3 1932 9 8 0 7 25  58.66 30.99  5.8 
4 1960 8 23 15 8 58  59.85 29.09  5.7 
5 1969 11 7 80 18 34  59.98 27.82  6.1 
6 1980 1 1 56 2 45  60.346 27.341  5.5 
7 2003 12 26 6 1 56  58.268 28.95  6.6 
8 2010 12 20 58.1 18 41  59.24 28.35  6.5 

 
1 1780 1 1 0 0 0  59 36  6.5 
2 1804 1 1 0 0 0  57.18 36.33  5.8 
3 1808 6 26 0 0 0  54.32 35.25  6.5 
4 1931 8 8 0 8 54  57.63 35.56  5.7 
5 1940 5 4 0 21 1  58.5 35.75  6.5 
6 1953 2 12 10 8 15  54.88 35.39  6.5 
7 1971 5 26 17 2 41  58.14 35.53  5.6 
8 1979 12 9 3 9 12  56.82 35.105  5.6 
9 2010 8 27 13.1 19 23  54.48 35.58  5.7 

 
1 1838 1 1 0 0 0  59.96 29.5  6.9 
2 1905 6 19 0 1 27  59.98 29.89  6.8 
3 1927 7 7 0 20 6  62.26 27  6.3 
4 1934 6 13 0 22 10  62.64 27.63  7.0 
5 1950 9 24 0 22 56  60.7 34.5  6.0 
6 1979 12 7 59 9 23  59.849 34.078  6.1 
7 1994 2 24 13 0 11  60.51 30.79  6.3 
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N Date  Location  Magnitude 

 Year Month Day Hour Min Sec  Latitude (N) Longitude (E) Mw 
8 1997 5 10 13 7 57  59.81 33.847  7.2 

 
1 1786 10 1 0 0 0  45.77 38.36  6.2 
2 1844 5 13 0 0 0  47.97 37.5  6.8 
3 1862 12 19 0 5 0  47.8 39.3  6.2 
4 1879 3 22 0 3 42  47.85 37.8  6.6 
5 1896 1 4 0 18 28  48.32 37.7  6.6 
6 1905 1 9 0 6 17  47.8 37.9  6.1 
7 1924 2 19 0 7 1  48.32 39  6.8 
8 1940 7 11 18 1 23  47.6 39.5  5.5 
9 1976 2 3 57.5 16 40  48.326 39.898  5.6 
10 1997 2 28 9 12 57  48.07 38.109  6.1 
11 2002 6 22 11 2 58  49.02 35.597  6.5 

 
1 856 12 22 0 0 0  54.14 36.23  7.3 
2 958 2 23 0 0 0  51.35 35.82  7.3 
3 1177 5 0 0 0 0  50.83 35.92  7.1 
4 1209 0 0 0 0 0  59.22 36.05  7.3 
5 1389 2 0 0 0 0  58.75 36.25  7.3 
6 1405 11 23 0 0 0  58.75 36.25  7.3 
7 1485 8 15 0 0 0  50.45 36.43  7.1 
8 1608 4 20 0 0 0  50.5 36.37  7.3 
9 1695 5 11 0 5 0  57.46 37.1  6.9 
10 1825 0 0 0 0 0  52.45 36.05  6.6 
11 1830 3 27 0 0 0  52.28 35.73  7.0 
12 1851 6 0 0 0 0  58.5 36.78  6.8 
13 1890 7 11 0 6 0  54.6 36.6  7.2 
14 1957 7 2 0 0 42  52.45 36.05  7.1 

 
1 1810 1 1 0 0 0  57.12 37.85  6.4 
2 1833 1 1 0 0 0  58.1 37.3  6.2 
3 1871 12 23 0 0 0  58.3 37.25  7.1 
4 1893 11 17 0 19 36  58.4 37.12  7.0 
5 1904 11 9 0 3 28  59.77 36.94  6.4 
6 1929 5 1 0 15 37  57.8 37.7  7.1 
7 1985 10 29 5 14 23  54.899 36.901  6.2 
8 1997 2 4 8 10 37  57.312 37.729  6.5 

 
1 1665 6 1 0 0 0  52.08 37.75  6.4 
2 1678 1 1 0 0 0  52.6 36.3  6.5 
3 1780 1 8 0 19 6  49.29 38.12  7.3 
4 1854 10 1 0 15 0  50 38  6.0 
5 1895 7 8 0 22 0  53.7 39.1  7.5 
6 1935 4 11 0 23 14  53.3 36.35  6.6 
7 1980 5 4 19 18 35  49.019 38.048  6.6 
8 1990 6 20 10 21 0  49.222 36.997  7.4 
9 2000 11 25 33 18 9  49.938 40.23  6.8 
 
  
Statistical learning theory is for small-sample 
statistics. And support vector machine is a new 
machine learning method based on the statistical 

learning theory. The support vector machine not only 
has solved certain problems in many learning 
methods, such as small sample, over fitting, high 
dimension and local minimum, but also has a higher 
generalization (forecasting) ability than that of 
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artificial neural networks. The strong earthquakes in 
Iran are related to a certain extent to the intensive 
seismicity along the main plate boundaries in the 
world; however, the relation is nonlinear. In the 
paper, we have studied this unclear relation by the 
support vector machine method for the purpose of 
forecasting strong earthquakes in Iran. 
The used methodology is quite different from the 
usual seismotectonic methods that allow delineating 
seismogenic zones and calculating the seismic hazard 
inside these zones. 
In the Alborz region, Gorshkov (2006) define 
seismogenic nodes prone to earthquakes M>6 and 
characteristic geomorphological-gelogical features 
that discriminate seismogenic nodes from non-
seismogenic ones. Morphostructural nodes are 
formed around intersections or junctions of two or 
several lineaments. The nodes have been obtained by 
the morphostructural zoning (MZ) method. The 
compiled MZ map shows the hierarchical block-
structure of the Alborz region, the network of 
boundary zones separating blocks formed at the 
intersections of boundary zones. The pattern 
recognition algorithm RBF was defined other nodes 
capable of such size earthquakes using topographic, 
morphometric, and morphostructural parameters that 
describe the nodes. Nodes prone to M>6  exhibit the 
high topographic contrast and the increased 
fragmentation of the crust. Results of the work were 
pointed out the high seismic potential of the Alborz 

region: this study was identified a number of 
seismogenic nodes, where the target earthquakes 
have not yet been recorded. 
 
 
 

 
 
 Fig. 2 An RBF neural classifier versus a linear classifier. 
 
 
 
 
 
 
 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u

v

  
Fig. 3  shows the predicted of pattern recognition of Alborz 
region by this methods. 
 
 
  

Machine learning will give us greater insight into the 
patterns underlying earthquake activity, even if we 
cannot predict the time, location, and strength of the 
earthquakes accurately, Machine learning algorithms 
available for us to understand and predict patterns of 
earthquakes activity. 
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Regression techniques have been widely used for 
forecasting time series [5]. Thus, an empirical study 
on sea water quality prediction can be found in [7]. 
The authors transformed quantitative data into 
statistical moments, and constructed a tree to estimate 
the forecasting interval of the target variable. Last, 
the problem of predicting the machinery degradation 
and trending of fault propagation before reaching the 
alarm was studied in [12]. In particular, the authors 
proposed an approach based on regression trees to 
forecast such time series. 
 

 IV. CONCLUSIONS 
Earthquake data from two particular areas of the 
Iranian plate have been successfully mined by means 
of two different techniques: QNN and the RBF 
algorithm. In particular, QNN with a confidence of 
83.0% and a lift of 5.6 on average have been 
discovered and a regression-tree with an error of 0.35 
has been built. Both techniques have discovered the 
great influence that the b–value has in earthquakes 
occurrences as its variation along with the time 
elapsed have shown to be useful to model different 
earthquakes. Thus, the patterns discovered before an 
earthquake takes place may be useful in subsequent 
predictions. 
It is well known that if the dimension of the network 
input is comparable to the size of the training set, 
which is the usual case in pattern recognition of 
earthquake, the system will easily bring about 
overfitting and result in poor generalization. In this 
paper, a general design approach using an RBF 
neural classifier for face recognition to cope with 
small training sets of high-dimensional problem is 
presented. 
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